Expression and localisation of two-pore domain (K2P) background leak potassium ion channels in the mouse retina

نویسندگان

  • Steven Hughes
  • Russell G. Foster
  • Stuart N. Peirson
  • Mark W. Hankins
چکیده

Two-pore domain (K2P) potassium channels perform essential roles in neuronal function. These channels produce background leak type potassium currents that act to regulate resting membrane potential and levels of cellular excitability. 15 different K2P channels have been identified in mammals and these channels perform important roles in a wide number of physiological systems. However, to date there is only limited data available concerning the expression and role of K2P channels in the retina. In this study we conduct the first comprehensive study of K2P channel expression in the retina. Our data show that K2P channels are widely expressed in the mouse retina, with variations in expression detected at different times of day and throughout postnatal development. The highest levels of K2P channel expression are observed for Müller cells (TWIK-1, TASK-3, TRAAK, and TREK-2) and retinal ganglion cells (TASK-1, TREK-1, TWIK-1, TWIK-2 and TWIK-3). These data offer new insight into the channels that regulate the resting membrane potential and electrical activity of retinal cells, and suggests that K2P channels are well placed to act as central regulators of visual signalling pathways. The prominent role of K2P channels in neuroprotection offers novel avenues of research into the treatment of common retinal diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered Expression of Two-Pore Domain Potassium (K2P) Channels in Cancer

Potassium channels have become a focus in cancer biology as they play roles in cell behaviours associated with cancer progression, including proliferation, migration and apoptosis. Two-pore domain (K2P) potassium channels are background channels which enable the leak of potassium ions from cells. As these channels are open at rest they have a profound effect on cellular membrane potential and s...

متن کامل

A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K+ Channels

Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that ...

متن کامل

Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds.

Sour (acid) taste is postulated to result from intracellular acidification that modulates one or more acid-sensitive ion channels in taste receptor cells. The identity of such channel(s) remains uncertain. Potassium channels, by regulating the excitability of taste cells, are candidates for acid transducers. Several 2-pore domain potassium leak conductance channels (K(2)P family) are sensitive ...

متن کامل

Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits.

Two-pore domain (K2P) potassium channels are the major molecular correlates of the background (leak) K(+) current in a wide variety of cell types. They generally play a key role in setting the resting membrane potential and regulate the response of excitable cells to various stimuli. K2P channels usually function as homodimers, and only a few examples of heteromerization have been previously re...

متن کامل

Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification.

Two-pore domain K(+) channels (K2P) mediate background K(+) conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K(+) channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pH(o)) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pH(o)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017