Signals and noise in the elasmobranch electrosensory system

نویسندگان

  • Montgomery
  • Bodznick
چکیده

Analyzing signal and noise for any sensory system requires an appreciation of the biological and physical milieu of the animal. Behavioral studies show that elasmobranchs use their electrosensory systems extensively for prey detection, but also for mate recognition and possibly for navigation. These biologically important signals are detected against a background of self-generated bioelectric fields. Noise-suppression mechanisms can be recognized at a number of different levels: behavior, receptor anatomy and physiology, and at the early stages of sensory processing. The peripheral filters and receptor characteristics provide a detector with permissive temporal properties but restrictive spatial characteristics. Biologically important signals probably cover the range from direct current to 10 Hz, whereas the bandwidth of the receptors is more like 0.1-10 Hz. This degree of alternating current coupling overcomes significant noise problems while still allowing the animal to detect external direct current signals by its own movement. Self-generated bioelectric fields modulated by breathing movement have similar temporal characteristics to important external signals and produce very strong modulation of electrosensory afferents. This sensory reafference is essentially similar, or common-mode, across all afferent fibers. The principal electrosensory neurons (ascending efferent neurons; AENs) of the dorsal octavolateralis nucleus show a greatly reduced response to common-mode signals. This suppression is mediated by the balanced excitatory and inhibitory components of their spatial receptive fields. The receptive field characteristics of AENs determine the information extracted from external stimuli for further central processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive mechanisms in the elasmobranch hindbrain

The suppression of self-generated electrosensory noise (reafference) and other predictable signals in the elasmobranch medulla is accomplished in part by an adaptive filter mechanism, which now appears to represent a more universal form of the modifiable efference copy mechanism discovered by Bell. It also exists in the gymnotid electrosensory lateral lobe and mechanosensory lateral line nucleu...

متن کامل

Suppression of Ventilatory Reafference in the Elasmobranch Electrosensory System: Medullary Neuron Receptive Fields Support a Common Mode Rejection Mechanism

Elasmobranch fishes have an electroreceptive system which they use for prey detection and orientation. Sensory inputs in this system are corrupted by a form of reafference generated by the animal's own ventilation. However, we show here that in the carpet shark, Cephaloscylium Isabella, as in two previously studied batoid species, this ventilatory 'noise' is reduced by sensory processing within...

متن کامل

An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish.

In lateral line and electrosensory systems of fish, the animal's own movements create unwanted stimulation that could interfere with the detection of biologically important signals. Here we report that an adaptive filter in the medullary nuclei of both senses suppresses self-stimulation. Second-order electrosensory neurons in an elasmobranch fish and mechanosensory neurons in a teleost fish lea...

متن کامل

Navigation by Induction-Based Magnetoreception in Elasmobranch Fishes

A quantitative frequency-domain model of induction-based magnetoreception is presented for elasmobranch fishes. We show that orientation with respect to the geomagnetic field can be determined by synchronous detection of electrosensory signals at harmonics of the vestibular frequency. The sensitivity required for this compass-sense mechanism is shown to be less than that known from behavioral e...

متن کامل

Adaptive Filtering in the Electrosensory System

Certain marine and freshwater shes have the ability to detect weak electric elds. One of the principal uses of this sense is to detect electric elds (or electric eld perturbations) caused by nearby objects. Detection of these weak extrinsic signals is complicated by the fact that the signals of interest are often swamped by larger signals associated with the sh's own motor activity. In several ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 202 # (Pt 10)  شماره 

صفحات  -

تاریخ انتشار 1999