X-to-autosome expression and msl-2 transcript abundance correlate among Drosophila melanogaster somatic tissues
نویسندگان
چکیده
In Drosophila melanogaster, the male-specific lethal (MSL) complex has been studied extensively for its role in upregulating male X-linked genes. Recent advances in high-throughput technologies have improved our understanding of how the MSL complex mediates dosage compensation through chromosome-wide chromatin modifications. Most studies, however, have focused on cell line models that cannot reflect any potential heterogeneity of in vivo dosage compensation. Comparisons between cell line and organismal gene-level dosage compensation upregulation suggest the possibility of variation in MSL complex activity among somatic tissues. We hypothesize the degree, up to but not exceeding 2-fold, to which the MSL complex upregulates male X-linked genes varies quantitatively by tissue type. In this model, MSL complex abundance acts as a rheostat to control the extent of upregulation. Using publicly available expression data, we provide evidence for our model in Drosophila somatic tissues. Specifically, we find X-to-autosome expression correlates with the tissue-specific expression of msl-2 which encodes an essential male-specific component of the MSL complex. This result suggests MSL complex mediated dosage compensation varies quantitatively by tissue type. Furthermore, this result has consequences for models explaining the organismal-scale molecular and evolutionary consequences of MSL-mediated dosage compensation.
منابع مشابه
Global analysis of X-chromosome dosage compensation
BACKGROUND Drosophila melanogaster females have two X chromosomes and two autosome sets (XX;AA), while males have a single X chromosome and two autosome sets (X;AA). Drosophila male somatic cells compensate for a single copy of the X chromosome by deploying male-specific-lethal (MSL) complexes that increase transcription from the X chromosome. Male germ cells lack MSL complexes, indicating that...
متن کاملSex-Specific Embryonic Gene Expression in Species with Newly Evolved Sex Chromosomes
Sex chromosome dosage differences between females and males are a significant form of natural genetic variation in many species. Like many species with chromosomal sex determination, Drosophila females have two X chromosomes, while males have one X and one Y. Fusions of sex chromosomes with autosomes have occurred along the lineage leading to D. pseudoobscura and D. miranda. The resulting neo-s...
متن کاملGlobal regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster.
A long-standing model postulates that X-chromosome dosage compensation in Drosophila occurs by twofold up-regulation of the single male X, but previous data cannot exclude an alternative model, in which male autosomes are down-regulated to balance gene expression. To distinguish between the two models, we used RNA interference to deplete Male-Specific Lethal (MSL) complexes from male-like tissu...
متن کاملSpecies-specific positive selection of the male-specific lethal complex that participates in dosage compensation in Drosophila.
In many taxa, males and females have unequal ratios of sex chromosomes to autosomes, which has resulted in the invention of diverse mechanisms to equilibrate gene expression between the sexes (dosage compensation). Failure to compensate for sex chromosome dosage results in male lethality in Drosophila. In Drosophila, a male-specific lethal (MSL) complex of proteins and noncoding RNAs binds to h...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کامل