Time-dependent effects of free fatty acids on glucose effectiveness in type 2 diabetes.

نویسندگان

  • Preeti Kishore
  • Julia Tonelli
  • Sudha Koppaka
  • Corina Fratila
  • Anita Bose
  • Do-Eun Lee
  • Kalpana Reddy
  • Meredith Hawkins
چکیده

Impaired effectiveness of glucose to suppress endogenous glucose production (EGP) is an important cause of worsening hyperglycemia in type 2 diabetes. Elevated free fatty acids (FFAs) may impair glucose effectiveness via several mechanisms, including rapid changes in metabolic fluxes and/or more gradual changes in gene expression of key enzymes or other proteins. Thus, we examined the magnitude and time course of effects of FFAs on glucose effectiveness in type 2 diabetes and whether glucose effectiveness can be restored by lowering FFAs. Glucose fluxes ([3-(3)H]-glucose) were measured during 6-h pancreatic clamp studies, at euglycemia (5 mmol/l glucose, t=0-240 min), and hyperglycemia (10 mmol/l, t=240-360 min). We studied 19 poorly controlled subjects with type 2 diabetes (HbA(1c) 10.9 +/- 0.4%, age 50 +/- 3 years, BMI 30 +/- 2 kg/m(2)) on at least two occasions with saline (NA- group) or nicotinic acid (NA group) infusions for 3, 6, or 16 h (NA3h, NA6h, and NA16h groups, respectively) to lower FFAs to nondiabetic levels. As a reference group, glucose effectiveness was also assessed in 15 nondiabetic subjects. There was rapid improvement in hepatic glucose effectiveness following only 3 h of NA infusion (NA3h = 31 +/- 6% suppression of EGP with hyperglycemia vs. NA- = 8 +/- 7%; P<0.01) and complete restoration of glucose effectiveness after 6 h of NA (NA6h = 41 +/- 8% suppression of EGP; P = NS vs. nondiabetic subjects). Importantly, the loss of hepatic glucose effectiveness in type 2 diabetes is completely reversible upon correcting the increased FFA concentrations. A longer duration of FFA lowering may be required to overcome the chronic effects of increased FFAs on hepatic glucose effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Simvastatin on Free Fatty Acids Profile in Fructose-fed Insulin Resistant Rats

Backgrounds: Type 2 diabetes mellitus is the most common metabolic disease and free fatty acids, as signaling molecules, can play a crucial role in the development of it. Different free fatty acids, through various cell membrane receptors, induce different effects on metabolic pathways and thereby affect insulin sensitivity. Simvastatin is a cholesterol decreasing drug prescrib...

متن کامل

Contribution of elevated free fatty acid levels to the lack of glucose effectiveness in type 2 diabetes.

Increased circulating free fatty acids (FFAs) inhibit both hepatic and peripheral insulin action. Because the loss of effectiveness of glucose to suppress endogenous glucose production and stimulate glucose uptake contributes importantly to fasting hyperglycemia in type 2 diabetes, we examined whether the approximate twofold elevations in FFA characteristic of poorly controlled type 2 diabetes ...

متن کامل

Inhibiting gluconeogenesis prevents fatty acid-induced increases in endogenous glucose production.

Glucose effectiveness, the ability of glucose per se to suppress endogenous glucose production (EGP), is lost in type 2 diabetes mellitus (T2DM). Free fatty acids (FFA) may contribute to this loss of glucose effectiveness in T2DM by increasing gluconeogenesis (GNG) and impairing the response to hyperglycemia. Thus, we first examined the effects of increasing plasma FFA levels for 3, 6, or 16 h ...

متن کامل

Specific inhibition of hormone-sensitive lipase improves lipid profile while reducing plasma glucose.

Elevation of plasma free fatty acids has been linked with insulin resistance and diabetes. Inhibition of lipolysis may provide a mechanism to decrease plasma fatty acids, thereby improving insulin sensitivity. Hormone-sensitive lipase (HSL) is a critical enzyme involved in the hormonally regulated release of fatty acids and glycerol from adipocyte lipid stores, and its inhibition may thus impro...

متن کامل

Effects of Vanadate on Oleic Acid Induced Insulin Resistance in Cultured Rat Hepatocytes

Insulin resistance is a common phenomenon in obesity and type 2 diabetes (1). It has been demonstrated that, among other factors, acutely elevated free fatty acids can induce insulin resistance in both peripheral tissues and liver (2). Free fatty acids also reduce insulin binding and degradation, and exert an important modulating effect on insulin action in isolated rat hepatocytes (3). They ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 55 6  شماره 

صفحات  -

تاریخ انتشار 2006