Incorporating mask topography edge diffraction in photolithography simulations.

نویسندگان

  • Jaione Tirapu-Azpiroz
  • Eli Yablonovitch
چکیده

In deep ultraviolet lithography simulations, conventional application of Kirchhoff's boundary conditions on the mask surface provides the so-called "thin-mask" approximation of the object field. Current subwavelength lithographic operation, however, places a serious limitation on this approximation, which fails to account for the topographical, or "thick-mask," effects. In this paper, a new simulation model is proposed that is theoretically founded on the well-established physical theory of diffraction. This model relies on the key result that diffraction effects can be interpreted as an intrinsic edge property, and modeled with just two fixed parameters: width and transmission coefficient of a locally determined boundary layer applied to each chrome edge. The proposed model accurately accounts for thick-mask effects of the fields on the mask, greatly improving the accuracy of aerial image simulations in photolithography, while maintaining a reasonable computational cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate prediction of 3D mask topography induced best focus variation in full-chip photolithography applications

Best focus variation among different device features is one of the limiting factors to process window in semiconductor photolithography applications. Accurate prediction of best focus variation in full-chip optical proximity correction (OPC) and verifications is important in order to detect and mitigate the problem in design and post-design stages. In this work, the origin of best focus variati...

متن کامل

Fast evaluation of Photomask Near-Fields in Sub-Wavelength 193nm Lithography

Sub-wavelength lithography places a serious limitation on the conventional ”thin mask” approximation of the field immediately behind the patterned mask. This approximation fails to account for the increasingly important topographical effects of the mask or ”thick mask” effects. This approximation of the photomask near-fields results from the direct application of Kirchhoff Boundary Conditions, ...

متن کامل

Subwavelength photolithography based on surface-plasmon polariton resonance.

The use of surface-plasmon polariton (SPP) resonance in the optical near field of a metallic mask to produce fine patterns with a resolution of subwavelength scale is proposed. Preliminary numerical simulations indicate that the critical resolution is mainly determined by the thickness of the metallic mask. The surface of the metallic mask on the illuminated side collects light through SPP coup...

متن کامل

Three-dimensional Simulation of Light-scattering over Nonplanar Substrates in Photolithography

A key step in photolithography simulation is a rigorous three-dimensional modeling of the exposure/bleaching of the resist's photoactive compound (PAC). Thereby electromagnetic (EM) scattering of light caused by the nonlinear resist as well as by a nonplanar topography has to be considered. We present a novel three-dimensional approach, based on a numerical solution of the Maxwell equations. Fu...

متن کامل

Robust source and mask optimization compensating for mask topography effects in computational lithography.

Mask topography effects need to be taken into consideration for a more accurate solution of source mask optimization (SMO) in advanced optical lithography. However, rigorous 3D mask models generally involve intensive computation and conventional SMO fails to manipulate the mask-induced undesired phase errors that degrade the usable depth of focus (uDOF) and process yield. In this work, an optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Optical Society of America. A, Optics, image science, and vision

دوره 23 4  شماره 

صفحات  -

تاریخ انتشار 2006