Fully integrated microfluidic platform enabling automated phosphoprofiling of macrophage response.

نویسندگان

  • Nimisha Srivastava
  • James S Brennan
  • Ronald F Renzi
  • Meiye Wu
  • Steven S Branda
  • Anup K Singh
  • Amy E Herr
چکیده

The ability to monitor cell signaling events is crucial to the understanding of immune defense against invading pathogens. Conventional analytical techniques such as flow cytometry, microscopy, and Western blot are powerful tools for signaling studies. Nevertheless, each approach is currently stand-alone and limited by multiple time-consuming and labor-intensive steps. In addition, these techniques do not provide correlated signaling information on total intracellular protein abundance and subcellular protein localization. We report on a novel phosphoFlow Chip (pFC) that relies on monolithic microfluidic technology to rapidly conduct signaling studies. The pFC platform integrates cell stimulation and preparation, microscopy, and subsequent flow cytometry. pFC allows host-pathogen phosphoprofiling in 30 min with an order of magnitude reduction in the consumption of reagents. For pFC validation, we monitor the mitogen-activated protein kinases ERK1/2 and p38 in response to Escherichia coli lipopolysaccharide (LPS) stimulation of murine macrophage cells (RAW 264.7). pFC permits ERK1/2 phosphorylation monitoring starting at 5 s after LPS stimulation, with phosphorylation observed at 5 min. In addition, ERK1/2 phosphorylation is correlated with subsequent recruitment into the nucleus, as observed from fluorescence microscopy performed on cells upstream of flow cytometric analysis. The fully integrated cell handling has the added advantage of reduced cell aggregation and cell loss, with no detectable cell activation. The pFC approach is a step toward unified, automated infrastructure for high-throughput systems biology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Validation of a fully integrated platform and disposable microfluidic chips enabling parallel purification of genome segments for assembly.

Recent progress in the field of genetic engineering has opened up the door to novel synthetic biology applications. Microfluidic technology has been emphasized as a key technology to support the development of these applications. While several important synthetic biology protocols have been developed in microfluidic format, no study has yet demonstrated on-chip error control. In synthetic biolo...

متن کامل

A Fully Automated Microfluidic Femtosecond Laser Axotomy Platform for Nerve Regeneration Studies in C. elegans

Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have ...

متن کامل

Fully integrated miniature device for automated gene expression DNA microarray processing.

A DNA microarray with 12,000 features was integrated with a microfluidic cartridge to automate the fluidic handling steps required to carry out a gene expression study of the human leukemia cell line (K562). The fully integrated microfluidic device consists of microfluidic pumps/mixers, fluid channels, reagent chambers, and a DNA microarray silicon chip. Microarray hybridization and subsequent ...

متن کامل

An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples.

During the last decade, saliva has emerged as a potentially ideal diagnostic biofluid for noninvasive testing. In this paper, we present an automated, integrated platform useable by minimally trained personnel in the field for the diagnosis of respiratory diseases using human saliva as a sample specimen. In this platform, a saliva sample is loaded onto a disposable microfluidic chip containing ...

متن کامل

A solvent resistant lab-on-chip platform for radiochemistry applications.

The application of microfluidics to the synthesis of Positron Emission Tomography (PET) tracers has been explored for more than a decade. Microfluidic benefits such as superior temperature control have been successfully applied to PET tracer synthesis. However, the design of a compact microfluidic platform capable of executing a complete PET tracer synthesis workflow while maintaining prospects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 81 9  شماره 

صفحات  -

تاریخ انتشار 2009