Signed Laplacian for spectral clustering revisited
نویسنده
چکیده
Classical spectral clustering is based on a spectral decomposition of a graph Laplacian, obtained from a graph adjacency matrix representing positive graph edge weights describing similarities of graph vertices. In signed graphs, the graph edge weights can be negative to describe disparities of graph vertices, for example, negative correlations in the data. Negative weights lead to possible negative spectrum of the standard graph Laplacian, which is cured by defining a signed Laplacian. We revisit comparing the standard and signed Laplacians and argue that the former is more natural than the latter, also showing that the negative spectrum is actually beneficial, for spectral clustering of signed graphs.
منابع مشابه
On spectral partitioning of signed graphs
Classical spectral clustering is based on a spectral decomposition of a graph Laplacian, obtained from a graph adjacency matrix representing positive graph edge weights describing similarities of graph vertices. In signed graphs, the graph edge weights can be negative to describe disparities of graph vertices, for example, negative correlations in the data. Negative weights lead to possible neg...
متن کاملSpectral Analysis of Signed Graphs for Clustering, Prediction and Visualization
We study the application of spectral clustering, prediction and visualization methods to graphs with negatively weighted edges. We show that several characteristic matrices of graphs can be extended to graphs with positively and negatively weighted edges, giving signed spectral clustering methods, signed graph kernels and network visualization methods that apply to signed graphs. In particular,...
متن کاملSIGNED GENERALIZED PETERSEN GRAPH AND ITS CHARACTERISTIC POLYNOMIAL
Let G^s be a signed graph, where G = (V;E) is the underlying simple graph and s : E(G) to {+, -} is the sign function on E(G). In this paper, we obtain k-th signed spectral moment and k-th signed Laplacian spectral moment of Gs together with coefficients of their signed characteristic polynomial and signed Laplacian characteristic polynomial are calculated.
متن کاملOn the Spectral Evolution of Large Networks
In this thesis, I study the spectral characteristics of large dynamic networks and formulate the spectral evolution model. The spectral evolution model applies to networks that evolve over time, and describes their spectral decompositions such as the eigenvalue and singular value decomposition. The spectral evolution model states that over time, the eigenvalues of a network change while its eig...
متن کاملCheeger constants, structural balance, and spectral clustering analysis for signed graphs
We introduce a family of multi-way Cheeger-type constants {h k , k = 1, 2, . . . , N} on a signed graph Γ = (G, σ) such that h k = 0 if and only if Γ has k balanced connected components. These constants are switching invariant and bring together in a unified viewpoint a number of important graph-theoretical concepts, including the classical Cheeger constant, the non-bipartiteness parameter of D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.01394 شماره
صفحات -
تاریخ انتشار 2017