Auxin acts as a local morphogenetic trigger to specify lateral root founder cells.
نویسندگان
چکیده
Plants exhibit an exceptional adaptability to different environmental conditions. To a large extent, this adaptability depends on their ability to initiate and form new organs throughout their entire postembryonic life. Plant shoot and root systems unceasingly branch and form axillary shoots or lateral roots, respectively. The first event in the formation of a new organ is specification of founder cells. Several plant hormones, prominent among them auxin, have been implicated in the acquisition of founder cell identity by differentiated cells, but the mechanisms underlying this process are largely elusive. Here, we show that auxin and its local accumulation in root pericycle cells is a necessary and sufficient signal to respecify these cells into lateral root founder cells. Analysis of the alf4-1 mutant suggests that specification of founder cells and the subsequent activation of cell division leading to primordium formation represent two genetically separable events. Time-lapse experiments show that the activation of an auxin response is the earliest detectable event in founder cell specification. Accordingly, local activation of auxin response correlates absolutely with the acquisition of founder cell identity and precedes the actual formation of a lateral root primordium through patterned cell division. Local production and subsequent accumulation of auxin in single pericycle cells induced by Cre-Lox-based activation of auxin synthesis converts them into founder cells. Thus, auxin is the local instructive signal that is sufficient for acquisition of founder cell identity and can be considered a morphogenetic trigger in postembryonic plant organogenesis.
منابع مشابه
Flavonoid biosynthesis and Arabidopsis genetics: more good music.
Ditengou FA, Teale WD, Kochersperger P, et al. 2008. Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 105, 18818–18823. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benkova E. 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Procee...
متن کاملA Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity
BACKGROUND Lateral roots are formed at regular intervals along the main root by recurrent specification of founder cells. To date, the mechanism by which branching of the root system is controlled and founder cells become specified remains unknown. RESULTS Our study reports the identification of the auxin regulatory components and their target gene, GATA23, which control lateral root founder ...
متن کاملThe auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis.
Organ primordia develop from founder cells into organs due to coordinated patterns of cell division. How patterned cell division is regulated during organ formation, however, is not well understood. Here, we show that the PUCHI gene, which encodes a putative APETALA2/ethylene-responsive element binding protein transcription factor, is required for the coordinated pattern of cell divisions durin...
متن کاملAuxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation.
In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is...
متن کاملCytokinins act directly on lateral root founder cells to inhibit root initiation.
In Arabidopsis thaliana, lateral roots are formed from root pericycle cells adjacent to the xylem poles. Lateral root development is regulated antagonistically by the plant hormones auxin and cytokinin. While a great deal is known about how auxin promotes lateral root development, the mechanism of cytokinin repression is still unclear. Elevating cytokinin levels was observed to disrupt lateral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 25 شماره
صفحات -
تاریخ انتشار 2008