A Word Vector and Matrix Factorization Based Method for Opinion Lexicon Extraction

نویسندگان

  • Zheng Lin
  • Weiping Wang
  • Xiaolong Jin
  • Jiguang Liang
  • Dan Meng
چکیده

Automatic opinion lexicon extraction has attracted lots of attention and many methods have thus been proposed. However, most existing methods depend on dictionaries (e.g., WordNet), which confines their applicability. For instance, the dictionary based methods are unable to find domain dependent opinion words, because the entries in a dictionary are usually domain-independent. There also exist corpus-based methods that directly extract opinion lexicons from reviews. However, they heavily rely on sentiment seed words that have limited sentiment information and the context information has not been fully considered. To overcome these problems, this paper presents a word vector and matrix factorization based method for automatically extracting opinion lexicons from reviews of different domains and further identifying the sentiment polarities of the words. Experiments on real datasets demonstrate that the proposed method is effective and performs better than the stateof-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature extraction in opinion mining through Persian reviews

Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...

متن کامل

Generate Adjective Sentiment Dictionary for Social Media Sentiment Analysis Using Constrained Nonnegative Matrix Factorization

Although sentiment analysis has attracted a lot of research, little work has been done on social media data compared to product and movie reviews. This is due to the low accuracy that results from the more informal writing seen in social media data. Currently, most of sentiment analysis tools on social media choose the lexicon-based approach instead of the machine learning approach because the ...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

An Evolutionary Neural Learning Algorithm for Offline Cursive Handwriting Words with Hamming Network Lexicon

Original Word Image Rule Based Segmentation Character Resizing Recognition of Character using an ANN (trained with EALTS-BT) Lexicon Analyser Input Feature Extraction Output In this paper we incorporate a hybrid evolutionary method, which uses a combination of genetic algorithm and matrix based solution method such as QR factorization. A heuristic segmentation algorithm is initially used to ove...

متن کامل

Opinion Word Expansion and Target Extraction through Double Propagation

Analysis of opinions, known as opinion mining or sentiment analysis, has attracted a great deal of attention recently due to many practical applications and challenging research problems. In this article, we study two important problems, namely, opinion lexicon expansion and opinion target extraction. Opinion targets (targets, for short) are entities and their attributes on which opinions have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015