Two random walks on the open cluster of Z meet infinitely often

نویسندگان

  • Xinxing Chen
  • Dayue Chen
چکیده

We prove that two independent continuous-time simple random walks on the infinite open cluster of a Bernoulli bond percolation in the lattice Z meet each other infinitely many times. An application to the voter model is also discussed. 2000 MR subject classification: 60K

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collisions of Random Walks

A recurrent graph G has the infinite collision property if two independent random walks on G, started at the same point, collide infinitely often a.s. We give a simple criterion in terms of Green functions for a graph to have this property, and use it to prove that a critical Galton-Watson tree with finite variance conditioned to survive, the incipient infinite cluster in Z with d ≥ 19 and the ...

متن کامل

Collision Problems of Random Walks in Two-Dimensional Time*

Let (Xij: i > 0, i > 0} be a double sequence of independently, identically distributed random variables (i.i.d.) which takes values in the d-dimensional integer lattice Ed . The double sequence {Sm,,: m > 0, n > 0} defined by Sllan= xy=, zyW, Xgj is called the random walk in two-dimensional time generated by 41, or a two-parameter random walk, or simply a random walk when there is no danger of ...

متن کامل

Recurrent graphs where two independent random walks collide finitely often Manjunath Krishnapur and Yuval Peres

We present a class of graphs where simple random walk is recurrent, yet two independent walkers meet only finitely many times almost surely. In particular, the comb lattice, obtained from Z 2 by removing all horizontal edges off the x-axis, has this property. We also conjecture that the same property holds for some other graphs, including the incipient infinite cluster for critical percolation ...

متن کامل

Some sufficient conditions for infinite collisions of simple random walks on a wedge comb

In this paper, we give some sufficient conditions for the infinite collisions of independent simple random walks on a wedge comb with profile {f(n), n ∈ Z}. One interesting result is that two independent simple random walks on the wedge comb will collide infinitely many times if f(n) has a growth order as n log n. On the other hand, if {f(n);n ∈ Z} are given by i.i.d. non-negative random variab...

متن کامل

A special set of exceptional times for dynamical random walk on Z

Benjamini, Häggström, Peres and Steif introduced the model of dynamical random walk on Z [2]. This is a continuum of random walks indexed by a parameter t. They proved that for d = 3,4 there almost surely exist t such that the random walk at time t visits the origin infinitely often, but for d ≥ 5 there almost surely do not exist such t. Hoffman showed that for d = 2 there almost surely exists ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009