Quantitative Verification of System Safety in Event-B

نویسندگان

  • Anton Tarasyuk
  • Elena Troubitsyna
  • Linas Laibinis
چکیده

Certification of safety-critical systems requires formal verification of system properties and behaviour as well as quantitative demonstration of safety. Usually, formal modelling frameworks do not include quantitative assessment of safety. This has a negative impact on productivity and predictability of system development. In this paper we present an approach to integrating quantitative safety analysis into formal system modelling and verification in Event-B. The proposed approach is based on an extension of Event-B, which allows us to perform quantitative assessment of safety within proofbased verification of system behaviour. This enables development of systems that are not only correct but also safe by construction. The approach is demonstrated by a case study – an automatic railway crossing system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overcoming the uncertainty in a research reactor LOCA in level-1 PSA; Fuzzy based fault-tree/event-tree analysis

Probabilistic safety assessment (PSA) which plays a crucial role in risk evaluation is a quantitative approach intended to demonstrate how a nuclear reactor meets the safety margins as part of the licensing process. Despite PSA merits, some shortcomings associated with the final results exist. Conventional PSA uses crisp values to represent the failure probabilities of basic events. This causes...

متن کامل

SOFTWARE VERIFICATION RESEARCH CENTRE SCHOOL OF INFORMATION TECHNOLOGY THE UNIVERSITY OF QUEENSLAND Queensland 4072 Australia TECHNICAL REPORT No. 99-46 A Process for Derivation and Quantification of Safety Requirements for Components of Complex Systems

This report describes a formal approach to verification and validation of safety requirements for embedded software, by application to a simple control-logic case study. The logic is formally specified in Z. System safety properties are formalised by defining The paper develops a theoretical basis for assigning safety requirements for components of complex systems, including software, in a form...

متن کامل

Dynamic Safety Analysis CNG Stations Using Fault Tree Approach and Bayesian Network

Introduction: The safety of CNG stations is important because of their location in urban areas, as well as to prevent accidents and to protect the safety of personnel, property, and environment. An event occurrence analysis with probability updating is the key to dynamic safety analysis. Methods and materials: In this study, the Failure Modes and Effects Analysis (FMEA) technique was used to d...

متن کامل

Safety Verification of Real Time Systems Serving Periodic Devices

In real-time systems response to a request from a controlled object must be correct and timely. Any late response to a request from such a device might lead to a catastrophy. The possibility of a task overrun, i.e., missing the deadline for completing a requested task, must be checked and removed during the design of such systems. Safe design of real-time systems running periodic tasks under th...

متن کامل

Decentralized prognosis of fuzzy discrete-event systems

This paper gives a decentralized approach to the problem of failure prognosis in the framework of fuzzy discrete event systems (FDES). A notion of co-predictability is formalized for decentralized prognosis of FDESs, where several local agents with fuzzy observability rather than crisp observability are used in the prognosis task. An FDES is said to be co-predictable if each faulty event can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011