Cell Type-Specific Sexual Dimorphism in Rat Pituitary Gene Expression During Maturation.
نویسندگان
چکیده
The most obvious functional differences between mammalian males and females are related to the control of reproductive physiology and include patterns of GnRH and gonadotropin release, the timing of puberty, sexual and social behavior, and the regulation of food intake and body weight. Using the rat as the best-studied mammalian model for maturation, we examined the expression of major anterior pituitary genes in five secretory cell types of developing males and females. Corticotrophs show comparable Pomc profiles in both sexes, with the highest expression occurring during the infantile period. Somatotrophs and lactotrophs also exhibit no difference in Gh1 and Prl profiles during embryonic to juvenile age but show the amplification of Prl expression in females and Gh1 expression in males during peripubertal and postpubertal ages. Gonadotrophs exhibit highly synchronized Lhb, Fshb, Cga, and Gnrhr expression in both sexes, but the peak of expression occurs during the infantile period in females and at the end of the juvenile period in males. Thyrotrophs also show different developmental Tshb profiles, which are synchronized with the expression of gonadotroph genes in males but not in females. These results indicate the lack of influence of sex on Pomc expression and the presence of two patterns of sexual dimorphism in the expression of other pituitary genes: a time shift in the peak expression during postnatal development, most likely reflecting the perinatal sex-specific brain differentiation, and modulation of the amplitude of expression during late development, which is secondary to the establishment of the hypothalamic-pituitary-gonadal and -thyroid axes.
منابع مشابه
Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism.
Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene exp...
متن کاملA new in vivo analysis model to detect sexually dimorphic rat liver cytochrome P450 gene expression dependent on growth hormone secretory patterns
Several drug-metabolizing cytochrome P450 (CYP) enzymes exhibit sexual dimorphism depending on the pituitary growth hormone (GH) secretory patterns. However, the mechanism underlying CYP sexual dimorphism remains unclear. We previously established a transgenic (Alb-DsRed2 Tg) rat that expressed red fluorescent DsRed2 protein, particularly in hepatocytes, to visualize cell differentiation and mu...
متن کاملSexual dimorphism of rat liver gene expression: regulatory role of growth hormone revealed by deoxyribonucleic Acid microarray analysis.
GH has diverse physiological actions and regulates the tissue-specific expression of numerous genes involved in growth, metabolism, and differentiation. Several of the effects of GH on somatic growth and gene expression are sex dependent and are regulated by pituitary GH secretory patterns, which are sexually differentiated. The resultant sex differences in plasma GH profiles are particularly s...
متن کاملTGF-ß1 Latency Associated Peptide Promotes Remodeling of Healing Cutaneous Wounds in the Rat
Background: The process of wound healing involves integrated events including inflammation, granulation tissue formation, matrix deposition and remodeling. Growth factors play a key role in the process. Among them transforming growth factor-ß1 (TGF-ß1) is known to accelerate tissue repair by promoting the synthesis and deposition of extracellular matrix proteins. However, persistence or overact...
متن کاملSex-specific early growth hormone response genes in rat liver.
Pituitary GH-secretory profiles are sex dependent and regulate the sexually dimorphic expression of a large number of genes in the liver. The slow response of many sex-specific liver genes to changes in plasma GH status suggests that GH acts in the liver via both direct and indirect mechanisms organized in a hierarchical regulatory network. Presently, genome-wide liver transcription profiling w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology of reproduction
دوره 93 1 شماره
صفحات -
تاریخ انتشار 2015