Computationally Efficient Nyström Approximation using Fast Transforms

نویسندگان

  • Si Si
  • Cho-Jui Hsieh
  • Inderjit S. Dhillon
چکیده

Our goal is to improve the training and prediction time of Nyström method, which is a widely-used technique for generating low-rank kernel matrix approximations. When applying the Nyström approximation for large-scale applications, both training and prediction time is dominated by computing kernel values between a data point and all landmark points. With m landmark points, this computation requires Θ(md) time (flops), where d is the input dimension. In this paper, we propose the use of a family of fast transforms to generate structured landmark points for Nyström approximation. By exploiting fast transforms, e.g., Haar transform and Hadamard transform, our modified Nyström method requires only Θ(m) or Θ(m log d) time to compute the kernel values between a given data point andm landmark points. This improvement in time complexity can significantly speed up kernel approximation and benefit prediction speed in kernel machines. For instance, on the webspam data (more than 300,000 data points), our proposed algorithm enables kernel SVM prediction to deliver 98% accuracy and the resulting prediction time is 1000 times faster than LIBSVM and only 10 times slower than linear SVM prediction (which yields only 91% accuracy).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Kernel K-Means Clustering with Nystrom Approximation: Relative-Error Bounds

Kernel k-means clustering can correctly identify and extract a far more varied collection of cluster structures than the linear k-means clustering algorithm. However, kernel kmeans clustering is computationally expensive when the non-linear feature map is highdimensional and there are many input points. Kernel approximation, e.g., the Nyström method, has been applied in previous works to approx...

متن کامل

Towards More Efficient SPSD Matrix Approximation and CUR Matrix Decomposition

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The standard sketch based method, which we call the prototype model, produces relatively accurate approximations, but is inefficient on large square matrices. The Nyström method is highly efficient, but can only achieve low a...

متن کامل

Estimating principal components of large covariance matrices using the Nyström method

Covariance matrix estimates are an essential part of many signal processing algorithms, and are often used to determine a lowdimensional principal subspace via their spectral decomposition. However, for sufficiently high-dimensional matrices exact eigenanalysis is computationally intractable, and in the case of limited data, sample eigenvalues and eigenvectors are known to be poor estimators of...

متن کامل

Towards More Efficient Nystrom Approximation and CUR Matrix Decomposition

Symmetric positive semi-definite (SPSD) matrix approximation methods have been extensively used to speed up large-scale eigenvalue computation and kernel learning methods. The sketching based method, which we call the prototype model, produces relatively accurate approximations. The prototype model is computationally efficient on skinny matrices where one of the matrix dimensions is relatively ...

متن کامل

Incremental kernel PCA and the Nyström method

Incremental versions of batch algorithms are often desired, for increased time efficiency in the streaming data setting, or increased memory efficiency in general. In this paper we present a novel algorithm for incremental kernel PCA, based on rank one updates to the eigendecomposition of the kernel matrix, which is more computationally efficient than comparable existing algorithms. We extend o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016