Numerical Solution of Altarelli-Parisi Equations

نویسندگان

  • R. Kobayashi
  • M. Miyama
چکیده

We discuss numerical solution of Altarelli-Parisi equations in a Laguerre-polynomial method and in a brute-force method. In the Laguerre method, we get good accuracy by taking about twenty Laguerre polynomials in the flavor-nonsinglet case. Excellent evolution results are obtained in the singlet case by taking only ten Laguerre polynomials. The accuracy becomes slightly worse in the small and large x regions, especially in the nonsinglet case. These problems could be implemented by using the brute-force method; however, running CPU time could be significantly longer than the one in the Laguerre method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Altarelli-Parisi equations with truncated moments

The technique of truncated moments of parton distributions allows us to study scaling violations without making any assumption on the shape of parton distributions. The numerical implementation of the method is however difficult, since the evolution equations for truncated moments are not diagonal. We present a simple way to improve the efficiency of the numerical solution of the evolution equa...

متن کامل

2 00 1 A fast and precise method to solve the Altarelli - Parisi equations in x space

A numerical method to solve linear integro-differential equations is presented. This method has been used to solve the QCD Altarelli-Parisi evolution equations within the H1 Collaboration at DESY-Hamburg. Mathematical aspects and numerical approximations are described. The precision of the method is discussed. This article is an extended version of an unpublished note [25]. In a recent publicat...

متن کامل

A Semianalytical Method to Solve Altarelli-parisi Evolution Equations

We discuss a new method to solve in a semianalytical way the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution equations at NLO order in the x-space. The method allows to construct an evolution operator expressed in form of a rapidly convergent series of matrices, depending only on the splitting functions. This operator, acting on a generic initial distribution, provides a very accurate solu...

متن کامل

/ 95 08 24 6 v 1 6 A ug 1 99 5 SAGA - HE - 81 - 95 August 4 , 1995 Numerical solution of Q 2 evolution equations in a brute - force method

We investigate numerical solution of Q 2 evolution equations for structure functions in the nucleon and in nuclei. (Dokshitzer-Gribov-Lipatov-)Altarelli-Parisi and Mueller-Qiu evolution equations are solved in a brute-force method. Spin-independent flavor-nonsinglet and singlet equations with next-to-leading-order α s corrections are studied. Dividing the variables x and Q 2 into small steps, w...

متن کامل

Complete solution of Altarelli - Parisi evolution equation in next - to - leading order and non - singlet structure function at low - x

We present complete solution of Altarelli-Parisi (AP) evolution equation in next-to-leading order (NLO) and obtain t-evolution of non-singlet structure function at low-x. Results are compared with HERA low-x and low-Q 2 data and also with those of complete solution in leading oder (LO) of AP evolution equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994