Development of Collagen/Demineralized Bone Powder Scaffolds and Periosteum-Derived Cells for Bone Tissue Engineering Application

نویسندگان

  • Thakoon Thitiset
  • Siriporn Damrongsakkul
  • Tanom Bunaprasert
  • Wilairat Leeanansaksiri
  • Sittisak Honsawek
چکیده

The aim of this study was to investigate physical and biological properties of collagen (COL) and demineralized bone powder (DBP) scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75-125 µm, 125-250 µm, and 250-500 µm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells), osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP) activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250-500 mm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250-500 mm particle size could be considered a potential bone tissue engineering implant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Review Paper: Embryonic Stem Cell and Osteogenic Differentiation

Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...

متن کامل

Demineralized dentin matrix scaffolds for alveolar bone engineering

From the point of view of implant dentistry, this review discusses the development and clinical use of demineralized dentin matrix (DDM) scaffolds, produced from the patient's own extracted teeth, to repair alveolar bone defects. The structure and the organic and inorganic components of DDM are presented to emphasize the similarities with autogenous bone. Studies of DDM properties, such as oste...

متن کامل

Probable Limitations of Osteoblasts Isolation from the Periosteum and Alveolar Bone in a Dog Model

Background & Objective: Bone defects in jaws create major problems for oral and maxillofacial surgery. To overcome the limitations of Autografts tissue engineering uses autogenus cells and synthetic scaffolds. Type of cells or cell sources have an important effect on the construction which is produced. The aim of this study was to evaluate the feasibility and probable limitations of osteoblast...

متن کامل

Comparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds

Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...

متن کامل

A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration

Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013