A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation
نویسندگان
چکیده
We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is unconditionally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme. Keywords— Cahn-Hilliard-Navier-Stokes; diffuse interface model; energy law preserving; unique solvability; pressure-projection; mixed finite element
منابع مشابه
A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system
We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely sol...
متن کاملUniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry
We propose and analyze two novel decoupled numerical schemes for solving the Cahn-HilliardStokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system...
متن کاملConvergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
In this paper, we present a novel second order in time mixed finite element scheme for the Cahn-Hilliard-Navier-Stokes equations with matched densities. The scheme combines a standard second order Crank-Nicholson method for the Navier-Stokes equations and a modification to the Crank-Nicholson method for the Cahn-Hilliard equation. In particular, a second order Adams-Bashforth extrapolation and ...
متن کاملAn H Convergence of a Second-order Convex-splitting, Finite Difference Scheme for the Three-dimensional Cahn–hilliard Equation∗
In this paper we present an unconditionally solvable and energy stable second order numerical scheme for the three-dimensional (3D) Cahn–Hilliard (CH) equation. The scheme is a twostep method based on a second order convex splitting of the physical energy, combined with a centered difference in space. The equation at the implicit time level is nonlinear but represents the gradients of a strictl...
متن کاملAn Efficient, Energy Stable Scheme for the Cahn-Hilliard-Brinkman System
We present an unconditionally energy stable and uniquely solvable finite difference scheme for the Cahn-Hilliard-Brinkman (CHB) system, which is comprised of a Cahn-Hilliard-type diffusion equation and a generalized Brinkman equation modeling fluid flow. The CHB system is a generalization of the Cahn-Hilliard-Stokes model and describes two phase very viscous flows in porous media. The scheme is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 290 شماره
صفحات -
تاریخ انتشار 2015