Novel mutations in the FOXC1 gene in Japanese patients with Axenfeld-Rieger syndrome
نویسندگان
چکیده
PURPOSE Mutations in the forkhead transcription factor (FOXC1) gene have been shown to cause juvenile glaucoma associated with a variety of anterior-segment anomalies. The purpose of this study was to determine the ocular and genetic characteristics of two Japanese families with Axenfeld-Rieger syndrome (ARS). METHODS Genomic DNA was extracted from the leukocytes of six members of two families with ARS. The DNA from one exon of the FOXC1 gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The patients received standard systemic and ophthalmological examinations. RESULTS Sequence analysis of the FOXC1 gene revealed a novel Ala85Pro missense mutation in Helix1 in family 1 and a deletion of 17 nucleotides (437-453) in Wing1 and Beta2 within the forkhead domain of the FOXC1 gene in family 2. This deletion predicted a loss of the forkhead domain by a premature termination of translation. These mutations segregated with the ARS phenotype in an autosomal dominant pattern. The affected individuals in family 1 had posterior embryotoxon, iris hypoplasia, corectopia with early-onset severe glaucoma, atrial septal defect, aortic stenosis, and pulmonary stenosis. The affected members in family 2 had posterior embryotoxon and iris hypoplasia with early-onset glaucoma, and systemically they had hearing loss, hypertelorism, and telecanthus. CONCLUSIONS A novel mutation in Helix1 and a novel deletion in Wing1 and Beta2 of the forkhead domain of the FOXC1 gene have been identified in two families with ARS. FOXC1 mutations cause a variety of developmental abnormalities in the anterior segment of the eye, and they also induce an elevation in intraocular pressures and early-onset glaucoma.
منابع مشابه
Novel c.300_301delinsT Mutation in PITX2 in a Korean Family with Axenfeld-Rieger Syndrome
Axenfeld-Rieger syndrome (ARS) is characterized by anomalies of the anterior segment of the eye and systemic abnormalities. Mutations in the FOXC1 and PITX2 genes are underlying causes of ARS, but there has been few reports on genetically confirmed ARS in Korea. We identified a novel PITX2 mutation (c.300_301delinsT) in 2 Korean patients from a family with ARS. We expand the spectrum of PITX2 m...
متن کاملThe wing 2 region of the FOXC1 forkhead domain is necessary for normal DNA-binding and transactivation functions.
PURPOSE To determine the biochemical defects that underlie Axenfeld-Rieger malformations, to determine a functional role for wing 2 in FOXC1, and to understand how mutations in this region disrupt FOXC1 function. METHODS Sequencing DNA from patients with Axenfeld-Rieger malformation resulted in the identification of two novel missense mutations (G165R and R169P) in wing 2 of FOXC1. Site-direc...
متن کاملA novel forkhead box C1 gene mutation in a Korean family with Axenfeld-Rieger syndrome
PURPOSE To report a case series of patients with novel forkhead box CI (FOXC1) mutations in a Korean family with Axenfeld-Rieger syndrome (ARS). METHODS Four members of the same family underwent complete ophthalmologic and systemic examinations and genetic analysis. Genomic DNA was isolated from peripheral blood leukocytes, and all coding exons with flanking intronic regions of the FOXC1 and ...
متن کاملStructural assessment of PITX2, FOXC1, CYP1B1, and GJA1 genes in patients with Axenfeld-Rieger syndrome with developmental glaucoma.
PURPOSE Axenfeld-Rieger (AR) is an autosomal dominant disorder with phenotypic heterogeneity characterized by anterior segment dysgenesis, facial bone defects, and redundant periumbilical skin. The PITX2 gene, on chromosome 4q25, and the FOXC1 gene, on chromosome 6p25, have been implicated in the different phenotypes of the syndrome through mutational events. Recently, the CYP1B1 gene was found...
متن کاملNovel Genetic Findings in a Chinese Family with Axenfeld-Rieger Syndrome
PURPOSE To describe a Chinese family with Axenfeld-Rieger syndrome (ARS) and report our novel genetic findings. METHODS Nine members of the same family underwent complete ophthalmologic examinations and genetic analysis. Genomic DNA was isolated from veinal blood and amplifed using PCR; the products of PCR were sequenced and compared with FOXC1 and PITX2 genes, from which the mutations were f...
متن کامل