Microsomal formation of S-nitrosoglutathione from organic nitrites: possible role of membrane-bound glutathione transferase.

نویسندگان

  • Y Ji
  • T P Akerboom
  • H Sies
چکیده

The formation of S-nitrosoglutathione (GSNO) from amyl nitrite and n-butyl nitrite was studied in rat liver microsomes, employing N-ethylmaleimide (MalNEt) as an activator and indomethacin as an inhibitor of microsomal glutathione S-transferase (GST). Rates were compared with GST activity measured with 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate. MalNEt stimulated GST activity and the formation of GSNO from amyl nitrite and n-butyl nitrite about 10-fold. Increasing concentrations of indomethacin inhibited both reactions in parallel. N-Acetyl-L-cysteine but not L-cysteine could substitute for GSH. It is concluded that rat liver microsomal GST catalyses the formation of GSNO from amyl nitrite and n-butyl nitrite. The activity of the MalNEt-stimulated microsomal GST is calculated to be about 17 units/mg of enzyme with the alkyl nitrites and about 16 units/mg of enzyme with CDNB as a substrate, assuming that 3% of microsomal protein is GST. These rates are comparable with those obtained for cytosolic GSTs. Thus microsomal GST may play a significant role in the metabolism of alkyl nitrites in biological membranes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand Binding and Mechanism of Microsomal Glutathione Transferase 1

The homo-trimeric, membrane bound Microsomal Glutathione Transferase 1 (MGST1, EC. 2.5.1.18) belongs functionally to both the glutathione transferase family (GST) and the Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism (MAPEG) superfamily. It is found in high amount in the liver, where it is localised to the endoplasmatic reticulum and the outer membrane of mitochondria. M...

متن کامل

MICROSOME-MEDIATED BENZO[A]PYRENE-DNA BINDING AND INHIBITION BY CYTOSOLIC FRACTIONS FROM LIVER AND SKIN OF ADULT AND WEANLING RATS

Biotransformation of benzo[a]pyrene (BaP) in the presence of microsomal fractions derived from liver and epiderm of adult and weanling rats was examined. The aim of this study was to evaluate the effect of age on the capacity of two organs in transformation of BaP. Subcellular fractions were prepared from skin and liver by ultracentrifugation and were used as the source of BaP metabolizing enzy...

متن کامل

Involvement of Cytochrome P-450 in n-Butyl Nitrite-Induced Hepatocyte Cytotoxicity

      Addition of n-butyl nitrite to isolated rat hepatocytes caused an immediate glutathione depletion followed by an inhibition of mitochondrial respiration, inhi- bition of glycolysis and ATP depletion. At cytotoxic butyl nitrite concentrations, lipid  peroxidation  occurred  before  the  plasma  membrane  was  disrupted. Cytochrome P-450 inhibitors inhibited peroxynitrite formation and prev...

متن کامل

Biotransformation of glyceryl trinitrate by rat hepatic microsomal glutathione S-transferase 1.

Although the biotransformation of organic nitrates by the cytosolic glutathione S-transferases (GSTs) is well known, the relative contribution of the microsomal GST (MGST1) to nitrate biotransformation has not been described. We therefore compared the denitration of glyceryl trinitrate (GTN) by purified rat liver MGST1 and cytosolic GSTs. Both MGST1 and cytosolic GSTs catalyzed the denitration ...

متن کامل

Studies of endogenous inhibitors of microsomal glutathione S-transferase.

Glutathione S-transferase is present in rat liver microsomal fraction, but its activity is low relative to the transferase activity present in the soluble fraction of the hepatocyte. We have found, however, that the activity of microsomal glutathione S-transferase is increased 5-fold after treatment with small unilamellar vesicles made from phosphatidylcholine. The increase in activity is due t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 313 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996