Multisensor Parallel Largest Ellipsoid Distributed Data Fusion with Unknown Cross-Covariances
نویسندگان
چکیده
As the largest ellipsoid (LE) data fusion algorithm can only be applied to two-sensor system, in this contribution, parallel fusion structure is proposed to introduce the LE algorithm into a multisensor system with unknown cross-covariances, and three parallel fusion structures based on different estimate pairing methods are presented and analyzed. In order to assess the influence of fusion structure on fusion performance, two fusion performance assessment parameters are defined as Fusion Distance and Fusion Index. Moreover, the formula for calculating the upper bounds of actual fused error covariances of the presented multisensor LE fusers is also provided. Demonstrated with simulation examples, the Fusion Index indicates fuser's actual fused accuracy and its sensitivity to the sensor orders, as well as its robustness to the accuracy of newly added sensors. Compared to the LE fuser with sequential structure, the LE fusers with proposed parallel structures not only significantly improve their properties in these aspects, but also embrace better performances in consistency and computation efficiency. The presented multisensor LE fusers generally have better accuracies than that of covariance intersection (CI) fusion algorithm and are consistent when the local estimates are weakly correlated.
منابع مشابه
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms...
متن کاملReceding Horizon Filtering for Mobile Robot Systems with Cross-Correlated Sensor Noises
This paper reports on a receding horizon filtering for mobile robot systems with cross-correlated sensor noises and uncertainties. Also, the effect of uncertain parameters in the state of the tracking error model performance is considered. A distributed fusion receding horizon filter is proposed. The distributed fusion filtering algorithm represents the optimal linear combination of the local f...
متن کاملReceding Horizon Filtering for Multisensor Linear Dynamics Systems
Distributed receding horizon discrete-time filtering is presented here, which combines a Kalman filter and receding horizon strategy. Distributed fusion with the weighted sum structure is then applied to local receding horizon Kalman filters (LRHKFs) having non-equal horizon time intervals. The proposed distributed algorithm has a parallel structure that allows for the parallel processing of ob...
متن کاملDistributed Fusion Receding Horizon Filtering in Linear Stochastic Systems
This paper presents a distributed receding horizon filtering algorithm for multisensor continuous-time linear stochastic systems. Distributed fusion with a weighted sum structure is applied to local receding horizon Kalman filters having different horizon lengths. The fusion estimate of the state of a dynamic system represents the optimal linear fusion by weighting matrices under the minimum me...
متن کاملFusion Estimation from Multisensor Observations with Multiplicative Noises and Correlated Random Delays in Transmission
In this paper, the information fusion estimation problem is investigated for a class of multisensor linear systems affected by different kinds of stochastic uncertainties, using both the distributed and the centralized fusion methodologies. It is assumed that the measured outputs are perturbed by one-step autocorrelated and cross-correlated additive noises, and also stochastic uncertainties cau...
متن کامل