Asymmetric dimethylarginine produces vascular lesions in endothelial nitric oxide synthase-deficient mice: involvement of renin-angiotensin system and oxidative stress.
نویسندگان
چکیده
OBJECTIVE Asymmetric dimethylarginine (ADMA) is widely believed to be an endogenous nitric oxide synthase (eNOS) inhibitor. However, in this study, we examined our hypothesis that the long-term vascular effects of ADMA are not mediated by inhibition of endothelial NO synthesis. METHODS AND RESULTS ADMA was infused in wild-type and eNOS-knockout (KO) mice by osmotic minipump for 4 weeks. In wild-type mice, long-term treatment with ADMA caused significant coronary microvascular lesions. Importantly, in eNOS-KO mice, treatment with ADMA also caused an extent of coronary microvascular lesions that was comparable to that in wild-type mice. These vascular effects of ADMA were not prevented by supplementation of l-arginine, and vascular NO production was not reduced by ADMA treatment. Treatment with ADMA caused upregulation of angiotensin-converting enzyme (ACE) and an increase in superoxide production that were comparable in both strains and that were abolished by simultaneous treatment with temocapril (ACE inhibitor) or olmesartan (AT(1) receptor antagonist), which simultaneously suppressed vascular lesion formation. CONCLUSIONS These results provide the first direct evidence that the long-term vascular effects of ADMA are not solely mediated by simple inhibition of endothelial NO synthesis. Direct upregulation of ACE and increased oxidative stress through AT(1) receptor appear to be involved in the long-term vascular effects of ADMA in vivo. This study demonstrates that asymmetrical dimethylarginine (ADMA) causes arteriosclerotic coronary lesions in mice in vivo through mechanisms other than simple inhibition of endothelial NO synthesis. Our findings should contribute to a better understanding of the pathophysiological role of ADMA in arteriosclerosis.
منابع مشابه
Role of asymmetric dimethylarginine in vascular injury in transgenic mice overexpressing dimethylarginie dimethylaminohydrolase 2.
Dimethylarginie dimethylaminohydrolase (DDAH) degrades asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) synthase inhibitor, and comprises 2 isoforms, DDAH1 and DDAH2. To investigate the in vivo role of DDAH2, we generated transgenic mice overexpressing DDAH2. The transgenic mice manifested reductions in plasma ADMA and elevations in cardiac NO levels but no changes in systemi...
متن کاملCritical role of vascular peroxidase 1 in regulating endothelial nitric oxide synthase
Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADMA) pathway. Hereby we describe the regulatory role of VPO1 on endothelial nitr...
متن کاملRenin-angiotensin system is involved in the mechanism of increased serum asymmetric dimethylarginine in essential hypertension.
Endothelium-dependent/nitric oxide (NO)-mediated vasodilation is impaired in hypertensive individuals. Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase, is synthesized by many types of cells including vascular endothelial cells. The serum level of ADMA is elevated in patients with essential hypertension, but the mechanism for this increase is unknown. Therefore, the pr...
متن کاملRenin-Angiotensin System Inhibitors Reduce Serum Asymmetric Dimethylarginine Levels and Oxidative Stress in Normotensive Patients with Chronic Kidney Disease
BACKGROUND/AIMS The purpose of our study was to elucidate the relationship between asymmetric dimethylarginine (ADMA) and intrarenal lesions and to determine the effect of renin-angiotensin system inhibitors (RAS-Is) on serum ADMA levels, nitric oxide (NO) synthesis and oxidative stress in normotensive patients with chronic kidney disease (CKD). METHODS This study included 23 normotensive pat...
متن کاملMechanism of Cellular Oxidation Stress Induced by Asymmetric Dimethylarginine
The mechanism by which asymmetric dimethylarginine (ADMA) induces vascular oxidative stress is not well understood. In this study, we utilized human umbilical vein endothelial cells (HUVEC) to examine the roles of ADMA cellular transport and the uncoupling of endothelial nitric oxide synthase (eNOS) in contributing to this phenomenon. Dihydroethidium (DHE) fluorescence was used as an index of o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 24 9 شماره
صفحات -
تاریخ انتشار 2004