Single-Channel Multiple Regression for In-Car Speech Enhancement

نویسندگان

  • Weifeng Li
  • Katsunobu Itou
  • Kazuya Takeda
  • Fumitada Itakura
چکیده

We address issues for improving hands-free speech enhancement and speech recognition performance in different car environments using a single distant microphone. This paper describes a new singlechannel in-car speech enhancement method that estimates the log spectra of speech at a close-talking microphone based on the nonlinear regression of the log spectra of noisy signal captured by a distant microphone and the estimated noise. The proposed method provides significant overall quality improvements in our subjective evaluation on the regression-enhanced speech, and performed best in most objective measures. Based on our isolated word recognition experiments conducted under 15 real car environments, the proposed adaptive nonlinear regression approach shows an advantage in average relative word error rate (WER) reductions of 50.8% and 13.1%, respectively, compared to original noisy speech and ETSI advanced front-end (ETSI ES 202 050). key words: speech enhancement, speech recognition, multi-layer perceptron, mean opinion score, pairwise preference test, environmental adaptation, K-means clustering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Evaluation of In-CAR Speech Enhancement Techniques With Microphone Array Steering

In this paper, we evaluate a performance of in-car speech enhancement techniques with single channel signal processing and microphone array signal processing. We employ SS (Fourier Spectral Subtraction) and WSS (Wavelet Spectral Subtraction) as single channel signal processing and delay-and-sum beamformer, eigen beamformer, AMNOR (Adaptive Microphone array for NOise Reduction), S-AMNOR, Svc-AMN...

متن کامل

A Novel Frequency Domain Linearly Constrained Minimum Variance Filter for Speech Enhancement

A reliable speech enhancement method is important for speech applications as a pre-processing step to improve their overall performance. In this paper, we propose a novel frequency domain method for single channel speech enhancement. Conventional frequency domain methods usually neglect the correlation between neighboring time-frequency components of the signals. In the proposed method, we take...

متن کامل

Robust In-Car Speech Recognition Based on Nonlinear Multiple Regressions

We address issues for improving handsfree speech recognition performance in different car environments using a single distant microphone. In this paper, we propose a nonlinear multiple-regression-based enhancement method for in-car speech recognition. In order to develop a data-driven in-car recognition system, we develop an effective algorithm for adapting the regression parameters to differen...

متن کامل

A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain

Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 89-D  شماره 

صفحات  -

تاریخ انتشار 2006