Fault tolerance in the Block-Shift Network
نویسنده
چکیده
The Block Shift Network (BSN) is a new topology for interconnection networks in multiprocessor systems. BSN is a class of networks defined by several parameters, and has a constant number of links/node for some given parameters. Many popular networks such as the hypercube, the shuffle-exchange, and the complete networks, are instances of the BSN for different parameters. Performance of BSN has been evaluated through analysis, simulation, and design of typical parallel algorithms on it. The results indicate that BSN surpasses the hypercube in several respects while retaining most of the hypercube advantages, especially when the traffic has the locality property. As the size & complexity of a system increase, however, the reliability aspects become equally important and should be included in the system-performance study. This paper discusses the reliability issue of BSN. Several reliability measures, including network connectivity, network diagnosability, and 2-terminal reliability, are obtained through analysis. This paper shows that the BSN not only surpasses the hypercube in performance as confirmed before, but also has comparable reliability to the hypercube under similar conditions. BSN is also very flexible in balancing its cost and performance. One can increase two parameters to enhance the performance and reliability of the BSN, while it is impossible to do so in the hypercube once its size is fixed. The BSN can be an effective interconnection network for future parallel computer systems. Future research includes more accurate reliability analysis for BSN, development of more efficient fault-tolerant routing algorithms, design and analysis of fault-tolerant broadcast algorithm and multicast algorithms, and comparisons with various augmented or modified hypercubes in terms of reliability and fault tolerance.
منابع مشابه
A generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کاملFault Tolerance of BSN and HCN
This paper presents two recent hierarchical interconnection networks, the Block Shift Network (BSN) and the Hierarchical Cubic Network (HCN). Then a comparison between them has been done in terms of reliability and fault tolerance issues such as the fault diameter and the 2-terminal reliability. The comparison between them is depending on different factors such as the topological properties and...
متن کاملCAFT: Cost-aware and Fault-tolerant routing algorithm in 2D mesh Network-on-Chip
By increasing, the complexity of chips and the need to integrating more components into a chip has made network –on- chip known as an important infrastructure for network communications on the system, and is a good alternative to traditional ways and using the bus. By increasing the density of chips, the possibility of failure in the chip network increases and providing correction and fault tol...
متن کاملNovel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata
Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...
متن کاملReliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Reliability
دوره 50 شماره
صفحات -
تاریخ انتشار 2001