Nonlinear modeling of MCFC stack based on RBF neural networks identification
نویسندگان
چکیده
Modelling Molten Carbonate Fuel Cells (MCFC) is very difficult and the existing models are too complicated to be used for controlling design, especially for on-line control design. This paper presents the application of neural networks identification method to develop the nonlinear temperature model of MCFC stack. The hidden layer units of the neural networks consist of a set of nonlinear radial basis functions (RBF). The temperature characters of MCFC stack are briefly analyzed. A summary of RBF neural networks for the multi-input and multi-output (MIMO) nonlinear system modelling is introduced. The simulation tests reveal that it is feasible to establish the model of MCFC stack using RBF neural networks identification. The most important thing is that the modelling process avoids complex analytical modelling that uses complicated differential equations to describe the stack. After being tested, the model can be used to predict the temperature responses on-line which makes it possible to design online controller of MCFC stack.
منابع مشابه
Modeling a SOFC stack based on GA-RBF neural networks identification
In this paper, a nonlinear offline model of the solid oxide fuel cell (SOFC) is built by using a radial basis function (RBF) neural network based n a genetic algorithm (GA). During the process of modeling, the GA aims to optimize the parameters of RBF neural networks and the optimum alues are regarded as the initial values of the RBF neural network parameters. Furthermore, we utilize the gradie...
متن کاملNonlinear Identification Using Neural Network Combined with Training Based on Particle Swarm Optimization
Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the identification of mathematical models typically nonlinear systems is vital in many fields of engineering. A variety of system identification techniques are applied to the modeling of processes dynamics. Recently, the identification of nonlinear systems by artificial neural networks has been...
متن کاملThe Modeling and Comparison of GMDH and RBF Artificial Neural Networks in Forecasting Consumption of Petroleum Products in the Agricultural Sector
Energy plays a significant role in today's developing societies. The role of energy demands to make decisions and policy with regard to its production, distribution, and supply. The vital importance of energy, especially fossil fuels, is a factor affecting agricultural production. This factor has a great influence on the production of agricultural products in Iran. The forecast of the con...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Simulation Modelling Practice and Theory
دوره 10 شماره
صفحات -
تاریخ انتشار 2002