De novo DNA methylation of the paternal genome in 2-cell mouse embryos.

نویسندگان

  • X S Ma
  • X G Wang
  • L Qin
  • C L Song
  • F Lin
  • J M Song
  • C C Zhu
  • H L Liu
چکیده

The developmental dynamics of DNA methylation events have been well studied. Active demethylation of the paternal genome occurs in the zygote, passive demethylation occurs during cleavage stages, and de novo methylation occurs by the blastocyst stage. It is believed that the paternal genome has lower levels of methylation during early development than the maternal genome. However, in this study, we provide direct and indirect evidence of genome-wide de novo DNA methylation of the paternal genome after the first cell cycle in mouse embryos. Although very little methylation was detected within the male pronucleus in zygotes, an intense methylation signal was clearly visible within the androgenetic 2-cell embryos. Moreover, the DNA methylation level of the paternal genome in the post-zygotic metaphase embryos was similar to that of the maternal genome. Using indirect immunofluorescence with an antibody to methylated lysine 9 in histone H3, we provided new evidence to support the concept of spatial compartmentalization of parental genomes in 2-cell mouse embryos. Nevertheless, the transient segregation of parental genomes was not observed by determining the DNA methylation distribution in the 2-cell embryos even though DNA methylation asymmetry between the maternal and paternal pronucleus existed in the 1-cell stage. The disappearance of separate immunofluorescence signals of 5-methyl cytosine in the 2-cell embryos might be attributed to the de novo methylation of the paternal genome during the first mitotic cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue

Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...

متن کامل

P-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos

Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...

متن کامل

Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos.

Mouse embryos undergo genome-wide methylation reprogramming by demethylation in early preimplantation development, followed by remethylation thereafter. Here we show that genome-wide reprogramming is conserved in several mammalian species and ask whether it also occurs in embryos cloned with the use of highly methylated somatic donor nuclei. Normal bovine, rat, and pig zygotes showed a demethyl...

متن کامل

P-94: Mouse Embryo Vitrification Cannot Effect on Global DNA Methylation in Preimplantation Stage

Background: Embryo vitrification was effectively used for assisted reproductive techniques. Despite the undeniable benefits of vitrification, cooling and warming stress, and cytotoxicity of cryoprotectant may affect the DNA methylation that have an important role in gene activation and silencing. In the present study effects of 2-cell embryo vitrification on DNA methylation in hatched blastocys...

متن کامل

O-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic

Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 13 4  شماره 

صفحات  -

تاریخ انتشار 2014