Uncorrelated trace ratio linear discriminant analysis for undersampled problems

نویسنده

  • Lei-Hong Zhang
چکیده

For linear discriminant analysis (LDA), the ratio trace and trace ratio are two basic criteria generalized from the classical Fisher criterion function, while the orthogonal and uncorrelated constraints are two common conditions imposed on the optimal linear transformation. The ratio trace criterion with both the orthogonal and uncorrelated constraints have been extensively studied in the literature, whereas the trace ratio criterion receives less interest mainly due to the lack of a closed-form solution and efficient algorithms. In this paper, we make an extensive study on the uncorrelated trace ratio linear discriminant analysis, with particular emphasis on the application on the undersampled problem. Two regularization uncorrelated trace ratio LDA models are discussed for which the global solutions are characterized and efficient algorithms are established. Experimental comparison on several LDA approaches are conducted on several real world datasets, and the results show that the uncorrelated trace ratio LDA is competitive with the orthogonal trace ratio LDA, but is better than the results based on ratio trace criteria in terms of the classification performance. ! 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems

A generalized discriminant analysis based on a new optimization criterion is presented. The criterion extends the optimization criteria of the classical Linear Discriminant Analysis (LDA) when the scatter matrices are singular. An efficient algorithm for the new optimization problem is presented. The solutions to the proposed criterion form a family of algorithms for generalized LDA, which can ...

متن کامل

A Discriminant Analysis for Undersampled Data

One of the inherent problems in pattern recognition is the undersampled data problem, also known as the curse of dimensionality reduction. In this paper a new algorithm called pairwise discriminant analysis (PDA) is proposed for pattern recognition. PDA, like linear discriminant analysis (LDA), performs dimensionality reduction and clustering, without suffering from undersampled data to the sam...

متن کامل

Data complexity assessment in undersampled classification of high-dimensional biomedical data

Regularized linear classifiers have been successfully applied in undersampled, i.e. small sample size/high dimensionality biomedical classification problems. Additionally, a design of data complexity measures was proposed in order to assess the competence of a classifier in a particular context. Our work was motivated by the analysis of ill-posed regression problems by Elden and the interpretat...

متن کامل

Weighted Generalized LDA for Undersampled Problems

Linear discriminant analysis (LDA) is a classical approach for dimensionality reduction. It aims to maximize between-class scatter and minimize within-class scatter, thus maximize the class discriminant. However, for undersampled problems where the data dimensionality is larger than the sample size, all scatter matrices are singular and the classical LDA encounters computational difficulty. Rec...

متن کامل

Discriminant subspace learning constrained by locally statistical uncorrelation for face recognition

High-dimensionality of data and the small sample size problem are two significant limitations for applying subspace methods which are favored by face recognition. In this paper, a new linear dimension reduction method called locally uncorrelated discriminant projections (LUDP) is proposed, which addresses the two problems from a new aspect. More specifically, we propose a locally uncorrelated c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011