Analytic order of singular and critical points

نویسنده

  • E. Shustin
چکیده

We deal with the following closely related problems: (i) For a germ of a reduced plane analytic curve, what is the minimal degree of an algebraic curve with a singular point analytically equivalent (isomorphic) to the given one? (ii) For a germ of a holomorphic function in two variables with an isolated critical point, what is the minimal degree of a polynomial, equivalent to the given function up to a local holomorphic coordinate change? Classically known estimates for such a degree d in these questions are √ μ+ 1 ≤ d ≤ μ+ 1, where μ is the Milnor number. Our result in both the problems is d ≤ a√μ with an absolute constant a. As a corollary, we obtain asymptotically proper sufficient conditions for the existence of algebraic curves with prescribed singularities on smooth algebraic surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

متن کامل

Linear differential - algebraic equations with properly stated leading term : B - critical points ∗

We examine in this paper so-called B-critical points of linear, time-varying differentialalgebraic equations (DAEs) of the form A(t)(D(t)x(t))′ + B(t)x(t) = q(t). These critical or singular points, which cannot be handled by classical projector methods, require adapting a recently introduced framework based on Π-projectors. Via a continuation of certain invariant spaces through the singularity,...

متن کامل

Critical Points of Functions on Singular Spaces

We compare and contrast various notions of the “critical locus” of a complex analytic function on a singular space. After choosing a topological variant as our primary notion of the critical locus, we justify our choice by generalizing Lê and Saito’s result that constant Milnor number implies that Thom’s af condition is satisfied.

متن کامل

Analytic representation of critical equations of state

We propose a new form for equations of state (EOS) of thermodynamic systems in the Ising universality class. The new EOS guarantees the correct universality and scaling behavior close to critical points and is formulated in terms of the scaling fields only – unlike the traditional Schofield representation, which uses a parametric form. Close to a critical point, the new EOS expresses the square...

متن کامل

Generalized Helices and Singular Points

In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002