Quantitative changes in branchial carbonic anhydrase activity and expression in the euryhaline green crab, Carcinus maenas, in response to low salinity exposure.

نویسندگان

  • Raymond P Henry
  • Kimberly L Thomason
  • David W Towle
چکیده

Hemolymph osmolality, and changes in gill carbonic anhydrase (CA) activity, relative mRNA expression, and CA protein concentration were measured in the green crab Carcinus maenas acclimated to 32 ppt salinity and transferred to 10 ppt. Hemolymph osomolality stabilized at new, acclimated values, by 24 hr after transfer. There was a large increase in CA mRNA concentrations, as measured by quantitative PCR, in the posterior gills by 24 hr post-transfer that remained elevated through 4 days. By 7 days, however, CA mRNA levels began to decline. CA activity, on the other hand, did not begin to increase until 48 hr after transfer to 10 ppt, but it continued to increase through 7 days. CA protein concentration increased by 5-fold in posterior gills in crabs acclimated to 10 ppt. CA activity, mRNA expression, and CA protein concentrations did not change in anterior gills. These results indicate that low salinity-stimulated CA induction is under transcriptional regulation, and that the increase in CA activity is a result of the increase in gene expression and synthesis of new enzyme. Changes in mRNA appear to be transient, but once synthesized, the CA protein appears to persist in the gill for an extended time. In a separate set of experiments, green crabs acclimated to 32 ppt were transferred directly to salinities of 25, 20, 15, and 10 ppt. CA activity and mRNA concentrations increased with decreasing salinity, peaking at 15 ppt but decreasing between 15 and 10 ppt. The decrease may represent a breakdown in the mechanism of transport-related protein induction near the lower salinity limit of this species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional evidence for the presence of a carbonic anhydrase repressor in the eyestalk of the euryhaline green crab Carcinus maenas.

Carbonic anhydrase (CA) activity and relative expression of CA mRNA were measured in the gills of the euryhaline green crab Carcinus maenas in response to eyestalk ablation (ESA), injection of eyestalk extract and exposure to low salinity. For crabs acclimated to 32 p.p.t. salinity, ESA alone resulted in an increase in both CA activity and relative mRNA expression in the posterior, ion-transpor...

متن کامل

Osmoregulation by Gills of Euryhaline Crabs: Molecular Analysis of Transporters1

SYNOPSIS. The physiological mechanisms by which aquatic animals regulate the osmoconcentration of their body fluids remain unclear despite many excellent studies of tissue and cell function. This review summarizes the current status of an ongoing molecular biological approach to investigating transporters and transportrelated enzymes in ion-transporting gills of osmoregulating crustaceans. We h...

متن کامل

Effects of salinity on short-term waterborne zinc uptake, accumulation and sub-lethal toxicity in the green shore crab (Carcinus maenas).

Waterborne zinc (Zn) is known to cause toxicity to freshwater animals primarily by disrupting calcium (Ca) homeostasis during acute exposure, but its effects in marine and estuarine animals are not well characterized. The present study investigated the effects of salinity on short-term Zn accumulation and sub-lethal toxicity in the euryhaline green shore crab, Carcinus maenas. The kinetic and p...

متن کامل

Environmentally mediated carbonic anhydrase induction in the gills of euryhaline crustaceans.

The enzyme carbonic anhydrase appears to be a central molecular component in the suite of physiological and biochemical adaptations to low salinity found in euryhaline crustaceans. It is present in high activities in the organs responsible for osmotic and ionic regulation, the gills, and more specifically, the individual gills that are specialized for active ion uptake from dilute sea water. Wi...

متن کامل

The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part A, Comparative experimental biology

دوره 305 10  شماره 

صفحات  -

تاریخ انتشار 2006