A Transition-based Algorithm for AMR Parsing

نویسندگان

  • Chuan Wang
  • Nianwen Xue
  • Sameer Pradhan
چکیده

We present a two-stage framework to parse a sentence into its Abstract Meaning Representation (AMR). We first use a dependency parser to generate a dependency tree for the sentence. In the second stage, we design a novel transition-based algorithm that transforms the dependency tree to an AMR graph. There are several advantages with this approach. First, the dependency parser can be trained on a training set much larger than the training set for the tree-to-graph algorithm, resulting in a more accurate AMR parser overall. Our parser yields an improvement of 5% absolute in F-measure over the best previous result. Second, the actions that we design are linguistically intuitive and capture the regularities in the mapping between the dependency structure and the AMR of a sentence. Third, our parser runs in nearly linear time in practice in spite of a worst-case complexity of O(n). The parser is available at: https://github. com/Juicechuan/AMRParsing

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMR Parsing with Cache Transition Systems

In this paper, we present a transition system that generalizes transition-based dependency parsing techniques to generate AMR graphs rather than tree structures. In addition to a buffer and a stack, we use a fixed-size cache, and allow the system to build arcs to any vertices present in the cache at the same time. The size of the cache provides a parameter that can trade off between the complex...

متن کامل

AMR Parsing using Stack-LSTMs

We present a transition-based AMR parser that directly generates AMR parses from plain text. We use Stack-LSTMs to represent our parser state and make decisions greedily. In our experiments, we show that our parser achieves very competitive scores on English using only AMR training data. Adding additional information, such as POS tags and dependency trees, improves the results further.

متن کامل

Noise reduction and targeted exploration in imitation learning for Abstract Meaning Representation parsing

Semantic parsers map natural language statements into meaning representations, and must abstract over syntactic phenomena, resolve anaphora, and identify word senses to eliminate ambiguous interpretations. Abstract meaning representation (AMR) is a recent example of one such semantic formalism which, similar to a dependency parse, utilizes a graph to represent relationships between concepts (Ba...

متن کامل

Boosting Transition-based AMR Parsing with Refined Actions and Auxiliary Analyzers

We report improved AMR parsing results by adding a new action to a transitionbased AMR parser to infer abstract concepts and by incorporating richer features produced by auxiliary analyzers such as a semantic role labeler and a coreference resolver. We report final AMR parsing results that show an improvement of 7% absolute in F1 score over the best previously reported result. Our parser is ava...

متن کامل

UofR at SemEval-2016 Task 8: Learning Synchronous Hyperedge Replacement Grammar for AMR Parsing

In this paper, we apply a synchronous-graphgrammar-based approach to SemEval-2016 Task 8, Meaning Representation Parsing. In particular, we learn Synchronous Hyperedge Replacement Grammar (SHRG) rules from aligned pairs of sentences and AMR graphs. Then we use Earley algorithm with cubepruning for AMR parsing given new sentences and the learned SHRG. Experiments on the evaluation dataset demons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015