Concentration Phenomena of a Semilinear Elliptic Equation with Large Advection in an Ecological Model
نویسنده
چکیده
We consider a reaction-diffusion-advection equation arising from a biological model of migrating species. The qualitative properties of the globally attracting solution are studied and in some cases the limiting profile is determined. In particular, a conjecture of Cantrell, Cosner and Lou on concentration phenomena is resolved under mild conditions. Applications to a related parabolic competition system are also discussed. Math. Subj. class: 35B30 (35J20 92D25)
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملBifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions
Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In ...
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملAdvection of Methane in the Hydrate Zone: Model, Analysis and Examples
A two-phase two-component model is formulated for the advective-diffusive transport of methane in liquid phase through sediment with the accompanying formation and dissolution of methane hydrate. This free-boundary problem has a unique generalized solution in L; the proof combines analysis of the stationary semilinear elliptic Dirichlet problem with the nonlinear semigroup theory in Banach spac...
متن کاملEXISTENCE OF A STEADY FLOW WITH A BOUNDED VORTEX IN AN UNBOUNDED DOMAIN
We prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. The data prescribed is the rearrangement class of the vorticity field. The corresponding stream function satisfies a semilinear elliptic partial differential equation. The result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearra...
متن کامل