Orexin restores aging-related brown adipose tissue dysfunction in male mice.

نویسندگان

  • Dyan Sellayah
  • Devanjan Sikder
چکیده

The aging process causes an increase in percent body fat, but the mechanism remains unclear. In the present study we examined the impact of aging on brown adipose tissue (BAT) thermogenic activity as potential cause for the increase in adiposity. We show that aging is associated with interscapular BAT morphologic abnormalities and thermogenic dysfunction. In vitro experiments revealed that brown adipocyte differentiation is defective in aged mice. Interscapular brown tissue in aged mice is progressively populated by adipocytes bearing white morphologic characteristics. Aged mice fail to mobilize intracellular fuel reserves from brown adipocytes and exhibit deficiency in homeothermy. Our results suggest a role for orexin (OX) signaling in the regulation of thermogenesis during aging. Brown fat dysfunction and age-related assimilation of fat mass were accelerated in mice in which OX-producing neurons were ablated. Conversely, OX injections in old mice increased multilocular morphology, increased core body temperature, improved cold tolerance, and reduced adiposity. These results argue that BAT can be targeted for interventions to reverse age-associated increase in fat mass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orexin receptor-1 mediates brown fat developmental differentiation

Orexin A (OX) is a small excitatory neuropeptide hormone that stimulates feeding, wakefulness and energy expenditure via a pair of G-coupled protein receptors, namely orexin receptor-1 (OXR1) and orexin receptor-2 (OXR2). OX-deficient mice are sensitive to obesity despite being hypophagic. The obesogenic effect of OX-deletion is due to brown adipose tissue (BAT) dysfunction, a defect that origi...

متن کامل

Ablation of PPARγ in subcutaneous fat exacerbates age‐associated obesity and metabolic decline

It is well established that aging is associated with metabolic dysfunction such as increased adiposity and impaired energy dissipation; however, the transcriptional mechanisms regulating energy balance during late life stages have not yet been fully elucidated. Here, we show that ablation of the nuclear receptor PPARγ specifically in inguinal fat tissue in aging mice is associated with increase...

متن کامل

Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In ...

متن کامل

Effects of risperidone on energy balance in female C57BL/6J mice

OBJECTIVE To investigate the effect of risperidone on energy expenditure and weight gain in female C57BL/6J mice. DESIGN AND METHODS Body weight and composition, food intake, energy expenditure, and activity were determined weekly. mRNA expression of uncoupling protein 1 in brown adipose tissue, orexin, and brain-derived neurotrophic factor in the hypothalamus were quantified using real-time ...

متن کامل

Clozapine blocks sympathetic and thermogenic reactions induced by orexin A in rat.

This experiment tested the effect of clozapine on the sympathetic and thermogenic effects induced by orexin A. The firing rates of the sympathetic nerves to interscapular brown adipose tissue (IBAT), along with IBAT and colonic temperatures were monitored in urethane-anesthetized male Sprague-Dawley rats before and for 5 h after an injection of orexin A (1.5 nmol) into the lateral cerebral vent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 155 2  شماره 

صفحات  -

تاریخ انتشار 2014