Influence of gaze rotation on the visual response of primate MSTd neurons.

نویسندگان

  • K V Shenoy
  • D C Bradley
  • R A Andersen
چکیده

When we move forward, the visual image on our retina expands. Humans rely on the focus, or center, of this expansion to estimate their direction of heading and, as long as the eyes are still, the retinal focus corresponds to the heading. However, smooth rotation of the eyes adds nearly uniform visual motion to the expanding retinal image and causes a displacement of the retinal focus. In spite of this, humans accurately judge their heading during pursuit eye movements and during active, smooth head rotations even though the retinal focus no longer corresponds to the heading. Recent studies in macaque suggest that correction for pursuit may occur in the dorsal aspect of the medial superior temporal area (MSTd) because these neurons are tuned to the retinal position of the focus and they modify their tuning during pursuit to compensate partially for the focus shift. However, the question remains whether these neurons also shift focus tuning to compensate for smooth head rotations that commonly occur during gaze tracking. To investigate this question, we recorded from 80 MSTd neurons while monkeys tracked a visual target either by pursuing with their eyes or by vestibulo-ocular reflex cancellation (VORC; whole-body rotation with eyes fixed in head and head fixed on body). VORC is a passive, smooth head rotation condition that selectively activates the vestibular canals. We found that neurons shift their focus tuning in a similar way whether focus displacement is caused by pursuit or by VORC. Across the population, compensation averaged 88 and 77% during pursuit and VORC, respectively (tuning shift divided by the retinal focus to true heading difference). Moreover the degree of compensation during pursuit and VORC was correlated in individual cells (P < 0.001). Finally neurons that did not compensate appreciably tended to be gain-modulated during pursuit and VORC and may constitute an intermediate stage in the compensation process. These results indicate that many MSTd cells compensate for general gaze rotation, whether produced by eye-in-head or head-in-world rotation, and further implicate MSTd as a critical stage in the computation of heading. Interestingly vestibular cues present during VORC allow many cells to compensate even though humans do not accurately judge their heading in this condition. This suggests that MSTd may use vestibular information to create a compensated heading representation within at least a subpopulation of cells, which is accessed perceptually only when additional cues related to active head rotations are also present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal coding of three-dimensional rotation and translation in area MSTd: comparison of visual and vestibular selectivity.

Recent studies have shown that most neurons in the dorsal medial superior temporal area (MSTd) signal the direction of self-translation (i.e., heading) in response to both optic flow and inertial motion. Much less is currently known about the response properties of MSTd neurons during self-rotation. We have characterized the three-dimensional tuning of MSTd neurons while monkeys passively fixat...

متن کامل

3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code.

UNLABELLED Neurons in the dorsal subregion of the medial superior temporal (MSTd) area of the macaque respond to large, complex patterns of retinal flow, implying a role in the analysis of self-motion. Some neurons are selective for the expanding radial motion that occurs as an observer moves through the environment ("heading"), and computational models can account for this finding. However, am...

متن کامل

Area MSTd neurons encode visual stimuli in eye coordinates during fixation and pursuit.

Visual signals generated by self-motion are initially represented in retinal coordinates in the early parts of the visual system. Because this information can be used by an observer to navigate through the environment, it must be transformed into body or world coordinates at later stations of the visual-motor pathway. Neurons in the dorsal aspect of the medial superior temporal area (MSTd) are ...

متن کامل

Saccade-induced image motion cannot account for post-saccadic enhancement of visual processing in primate MST

Primates use saccadic eye movements to make gaze changes. In many visual areas, including the dorsal medial superior temporal area (MSTd) of macaques, neural responses to visual stimuli are reduced during saccades but enhanced afterwards. How does this enhancement arise-from an internal mechanism associated with saccade generation or through visual mechanisms activated by the saccade sweeping t...

متن کامل

Does the middle temporal area carry vestibular signals related to self-motion?

Recent studies have described vestibular responses in the dorsal medial superior temporal area (MSTd), a region of extrastriate visual cortex thought to be involved in self-motion perception. The pathways by which vestibular signals are conveyed to area MSTd are currently unclear, and one possibility is that vestibular signals are already present in areas that are known to provide visual inputs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 1999