Author Profiling with Bidirectional RNNs using Attention with GRUs
نویسندگان
چکیده
This paper describes our approach for the Author Profiling Shared Task at PAN 2017. The goal was to classify the gender and language variety of a Twitter user solely by their tweets. Author Profiling can be applied in various fields like marketing, security and forensics. Twitter already uses similar techniques to deliver personalized advertisement for their users. PAN 2017 provided a corpus for this purpose in the languages: English, Spanish, Portuguese and Arabic. To solve the problem we used a deep learning approach, which has shown recent success in Natural Language Processing. Our submitted model consists of a bidirectional Recurrent Neural Network implemented with a Gated Recurrent Unit (GRU) combined with an Attention Mechanism. We achieved an average accuracy over all languages of 75,31% in gender classification and 85,22% in language variety classification.
منابع مشابه
Revisiting NARX Recurrent Neural Networks for Long-Term Dependencies
Recurrent neural networks (RNNs) have shown success for many sequence-modeling tasks, but learning long-term dependencies from data remains difficult. This is often attributed to the vanishing gradient problem, which shows that gradient components relating a loss at time t to time t− τ tend to decay exponentially with τ . Long short-term memory (LSTM) and gated recurrent units (GRUs), the most ...
متن کاملContext-Sensitive and Role-Dependent Spoken Language Understanding Using Bidirectional and Attention LSTMs
To understand speaker intentions accurately in a dialog, it is important to consider the context of the surrounding sequence of dialog turns. Furthermore, each speaker may play a different role in the conversation, such as agent versus client, and thus features related to these roles may be important to the context. In previous work, we proposed context-sensitive spoken language understanding (...
متن کاملMultiple Range-Restricted Bidirectional Gated Recurrent Units with Attention for Relation Classification
Most of neural approaches to relation classification have focused on finding short patterns that represent the semantic relation using Convolutional Neural Networks (CNNs) and those approaches have generally achieved better performances than using Recurrent Neural Networks (RNNs). In a similar intuition to the CNN models, we propose a novel RNN-based model that strongly focuses on only importan...
متن کاملMultiple-Weight Recurrent Neural Networks
Recurrent neural networks (RNNs) have enjoyed great success in speech recognition, natural language processing, etc. Many variants of RNNs have been proposed, including vanilla RNNs, LSTMs, and GRUs. However, current architectures are not particularly adept at dealing with tasks involving multi-faceted contents, i.e., data with a bimodal or multimodal distribution. In this work, we solve this p...
متن کاملExplorations in Identifying and Summarizing Subjective Content in Text
The extraction and summarization of opinions in text is a useful task that lends itself naturally to connectionist models of sequential data analysis, such as RNNs and LSTMs. Recent work by Irsoy et al. [11] has shown that RNNs (particularly bidirectional deep RNNs) can be quite successfully applied to the task of identifying opinionated phrases in text. Further, Wang et al. [19] have worked on...
متن کامل