Spatio-temporal structure extraction and denoising of geophysical fluid image sequences using 3D curvelet transforms
نویسندگان
چکیده
Since several decades many satellites have been launched for the observation of the Earth for a better knowledge of the atmosphere and of the ocean. The sequences of images that such satellites provide show the evolution of some large scale structures such as vortices and fronts. It is obvious that the dynamic of these structures may have a strong predictive potential. Extracting these structures and tracking their evolution automatically is then essential for future forecast systems. In this paper we consider extraction of spatio-temporal geometric structures from image sequences of geophysical fluid flow using threedimensional (3D) curvelet transform and total variation minimization. Numerical experiments on simulated geophysical fluids and real video data by remote sensing show good performances of the proposed method in terms of denoising and edge structural extraction. This work is partially motivated by a sequent application to image sequence assimilation of geophysical fluids. Key-words: 3D Curvelets, feature extraction, 3D total variation, data assimilation, video/image sequences, remote sensing ∗ School of Aerospace, Tsinghua University, Beijing 100084, China. E-mail: [email protected] † INRIA, Lab. Jean-Kuntzmann, BP 53, 38041 Grenoble Cedex 9, France. E-mail: [email protected], [email protected], [email protected] in ria -0 03 29 59 9, v er si on 1 13 O ct 2 00 8 Extraction de structures spatio-temporelle et débruitage de séquences d’image de fluides géophysiques à l’aide de transformées de courbelettes 3D Résumé : Depuis quelques décénies de nombreux satellites d’observation de la terre ont été lancésafin d’améliorer nos connaissances de l’atmosphère et de l’océan. Les séquences d’image fournies par de tels satellites montrent l’évolution de structures grandes échelles telles que les syclones et les fronts. Il est évident que la dynamique contenue dans ces structures peuvent avoir un fort potentiel prédictif. Extraire ces structures et suivre leur évolution de façon automatique est donc essentiel pour les futurs systèmes de prévision. Dans cet article on considère l’extraction de structures géometriques spatio-temporelles dans des séquences d’images de fluides géophysiques en utilisant des transformées en coubelettes 3D une minimisation de la variation totale. Des expériences numériques sur des images de fluides géophysiques simulées et des données de vidéo réelles montrent la bonne performance de la méthode proposée en terme de débruitage et extraction de structure. Mots-clés : Courbelettes 3D , extraction de caractéristiques, Total Variation 3D, assimilation de données, video/séquences d’image, télédetection in ria -0 03 29 59 9, v er si on 1 13 O ct 2 00 8 3D curvelets for video processing 3 Figure 1: Image sequence over Europe provided by the METEOSAT satellite (visible channel, source Météo France). Figure 2: Images of sea surface temperature of the Black Sea provided by the AVHRR satellite (infra-red channel, source NOAA).
منابع مشابه
Image Denoising Method Using curvelet Transform and Wiener Filter
A new image denoising method based on curvelet transform is proposed. The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. Here, we pursue "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. Deno...
متن کاملIterative Basis Pursuit for Image Sequence Denoising
An iterative method is purposed in this paper using the basis pursuit algorithm for spatial denoising, coupled with temporal wavelet denoising to result in a denoised video signal. Introduction Several new techniques have been developed recently for the purposes of denoising images. The most promising of these techniques have been the curvelet and undecimated wavelet transforms. Using a basis p...
متن کاملFingerprint Image Denoising Using Curvelet Transform
Curvelet transform is the new member of the evolving family of multiscale geometric transforms. It offers an effective solution to the problems associated with image denoising using wavelets. Finger prints possess the unique properties of distinctiveness and persistence. However, their image contrast is poor due to mixing of complex type of noise. In this paper an attempt has been made to prese...
متن کاملAn Efficient Curvelet Framework for Denoising Images
Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...
متن کاملImage Denoising Using Multi-Frame Image Content in Curvelet Transform Domain
We present a multi-frame information involved image denoising approach through spatiotemporal GSM (Gaussian Mixture Scales Modeling) of image Curvelet statistics both considering of the innerframe and inter-frame statistics. By using the Bayes inference based least square estimation, we construct a Bayesian Least Squared GSM (BLS-GSM) based image denoising model for single image noise cancellat...
متن کامل