Discrete Fractional Hartley and Fourier Transforms

نویسندگان

  • Soo-Chang Pei
  • Chien-Cheng Tseng
  • Min-Hung Yeh
  • Jong-Jy Shyu
چکیده

This paper is concerned with the definitions of the discrete fractional Hartley transform (DFRHT) and the discrete fractional Fourier transform (DFRFT). First, the eigenvalues and eigenvectors of the discrete Fourier and Hartley transform matrices are investigated. Then, the results of the eigendecompositions of the transform matrices are used to define DFRHT and DFRFT. Also, an important relationship between DFRHT and DFRFT is described, and numerical examples are illustrated to demonstrate that the proposed DFRFT is a better approximation to the continuous fractional Fourier transform than the conventional defined DFRFT. Finally, a filtering technique in the fractional Fourier transform domain is applied to remove chirp interference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional cosine and sine transforms in relation to the fractional Fourier and Hartley transforms

The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing, and to the fractional Hartley transform – are introduced and their main properties and possible applications as elementary fractional transforms of causal signals are discussed.

متن کامل

Fractional cosine, sine, and Hartley transforms

In previous papers, the Fourier transform (FT) has been generalized into the fractional Fourier transform (FRFT), the linear canonical transform (LCT), and the simplified fractional Fourier transform (SFRFT). Because the cosine, sine, and Hartley transforms are very similar to the FT, it is reasonable to think they can also be generalized by the similar way. In this paper, we will introduce sev...

متن کامل

Sampling and series expansion theorems for fractional Fourier and other transforms

We present much briefer and more direct and transparent derivations of some sampling and series expansion relations for fractional Fourier and other transforms. In addition to the fractional Fourier transform, the method can also be applied to the Fresnel, Hartley, and scale transform and other relatives of the Fourier transform. ? 2003 Published by Elsevier B.V.

متن کامل

Implementing 2-d and 3-d Discrete Hartley Transforms on a Massively Parallel Simd Mesh Computer

Discrete Hartley transform (DHT) is known to outperform fast Fourier transform (FFT) on sequential machines. Here we investigate parallel algorithms and implementations of twoand three-dimensional DHT in order to determine if the advantage of Hartley transforms over Fourier transforms carries over to parallel environment as well. Our extensive empirical study of the performances of DHT and FFT ...

متن کامل

Sparse representation of two- and three-dimensional images with fractional Fourier, Hartley, linear canonical, and Haar wavelet transforms

Sparse recovery aims to reconstruct signals that are sparse in a linear transform domain from a heavily underdetermined set of measurements. The success of sparse recovery relies critically on the knowledge of transform domains that give compressible representations of the signal of interest. Here we consider twoand three-dimensional images, and investigate various multi-dimensional transforms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998