Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study.

نویسندگان

  • M Ballerini
  • N Cabibbo
  • R Candelier
  • A Cavagna
  • E Cisbani
  • I Giardina
  • V Lecomte
  • A Orlandi
  • G Parisi
  • A Procaccini
  • M Viale
  • V Zdravkovic
چکیده

Numerical models indicate that collective animal behavior may emerge from simple local rules of interaction among the individuals. However, very little is known about the nature of such interaction, so that models and theories mostly rely on aprioristic assumptions. By reconstructing the three-dimensional positions of individual birds in airborne flocks of a few thousand members, we show that the interaction does not depend on the metric distance, as most current models and theories assume, but rather on the topological distance. In fact, we discovered that each bird interacts on average with a fixed number of neighbors (six to seven), rather than with all neighbors within a fixed metric distance. We argue that a topological interaction is indispensable to maintain a flock's cohesion against the large density changes caused by external perturbations, typically predation. We support this hypothesis by numerical simulations, showing that a topological interaction grants significantly higher cohesion of the aggregation compared with a standard metric one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limited interactions in flocks: relating model simulations to empirical data.

The mechanism of self-organization resulting in coordinated collective motion has received wide attention from a range of scientists interested in both its technical and biological relevance. Models have been highly influential in highlighting how collective motion can be produced from purely local interactions between individuals. Typical models in this field are termed 'metric' because each i...

متن کامل

A Model of Scale-Free Proportion Based on Mutual Anticipation

Recently, new empirical research of flocking behavior has been accumulated. Scale-free proportion has revealed how a flock can appear to behave as if it has one mind and body. The notion of scale-free proportion implies that the correlated domain within a flock is not constant size, but is proportional to flock size. Scale-free proportion can be explained by previous models, such as BOIDS based...

متن کامل

Spatially balanced topological interaction grants optimal cohesion in flocking models.

Models of self-propelled particles (SPPs) are an indispensable tool to investigate collective animal behaviour. Originally, SPP models were proposed with metric interactions, where each individual coordinates with neighbours within a fixed metric radius. However, recent experiments on bird flocks indicate that interactions are topological: each individual interacts with a fixed number of neighb...

متن کامل

Fluctuation-Driven Flocking Movement in Three Dimensions and Scale-Free Correlation

Recent advances in the study of flocking behavior have permitted more sophisticated analyses than previously possible. The concepts of "topological distances" and "scale-free correlations" are important developments that have contributed to this improvement. These concepts require us to reconsider the notion of a neighborhood when applied to theoretical models. Previous work has assumed that in...

متن کامل

Privacy Spatial and Temporal Distances in Nomadic Settelments

Human always in interaction with their social environment, have consider some degree of privacy with different purposes, for themselves, the people around them and carry out their activities. Creating privacy depends on two elements; subjective meanings that ruling the creation of privacy, and the second sentence are person available facilities. Privacy is not seen, heard, smelled and availabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 2008