SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis thaliana

نویسندگان

  • Mikael Johansson
  • Dorothee Staiger
چکیده

Timing of flowering is determined by environmental and developmental signals, leading to promotion or repression of key floral integrators. SENSITIVITY TO RED LIGHT REDUCED (SRR1) is a pioneer protein previously shown to be involved in regulation of the circadian clock and phytochrome B signalling in Arabidopsis thaliana. This report has examined the role of SRR1 in flowering time control. Loss-of-function srr1-1 plants flowered very early compared with the wild type under short-day conditions and had a weak flowering response to increasing daylength. Furthermore, FLOWERING LOCUS T (FT) transcript levels were elevated already in short days in srr1-1 compared with the wild type. This correlated with elevated end of day levels of CONSTANS (CO), whereas levels of CYCLING DOF FACTOR 1 (CDF1), a repressor of CO transcription, were reduced. srr1-1 gi-2 and srr1-1 co-9 double mutants showed that SRR1 can also repress flowering independently of the photoperiodic pathway. srr1-1 flowered consistently early between 16 °C and 27 °C, showing that SRR1 prevents premature flowering over a wide temperature range. SRR1 also promotes expression of the repressors TEMPRANILLO 1 (TEM1) and TEM2. Consequently their targets in the gibberellin biosynthesis pathway were elevated in srr1-1. SRR1 is thus an important focal point of both photoperiodic and photoperiod-independent regulation of flowering. By stimulating expression of the FT-binding repressors CDF1, TEM1 and TEM2, and FLC, flowering is inhibited in non-inductive conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis.

Flowering in plants is a dynamic and synchronized process where various cues including age, day length, temperature and endogenous hormones fine-tune the timing of flowering for reproductive success. Arabidopsis thaliana is a facultative long day (LD) plant where LD photoperiod promotes flowering. Arabidopsis still flowers under short-day (SD) conditions, albeit much later than in LD conditions...

متن کامل

SHORT VEGETATIVE PHASE Up-Regulates TEMPRANILLO2 Floral Repressor at Low Ambient Temperatures.

Plants integrate day length and ambient temperature to determine the optimal timing for developmental transitions. In Arabidopsis (Arabidopsis thaliana), the floral integrator FLOWERING LOCUS T (FT) and its closest homolog TWIN SISTER OF FT promote flowering in response to their activator CONSTANS under long-day inductive conditions. Low ambient temperature (16°C) delays flowering, even under i...

متن کامل

The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering.

Chromatin remodeling is essential for the reprogramming of transcription associated with development and cell differentiation. The SWI/SNF complex was the first chromatin remodeling complex characterized in yeast and Drosophila. In this work we have characterized an Arabidopsis thaliana homolog of Brahma, the ATPase of the Drosophila SWI/SNF complex. As its Drosophila counterpart, Arabidopsis t...

متن کامل

Non-inductive conditions expose the cryptic bract of flower phytomeres in Arabidopsis thaliana

The aerial plant architecture is built by phytomeres which are metameric units, each composed of a stem segment (internode) and a leaf with axillary meristem (node). In Arabidopsis thaliana, fully developed flower phytomeres lack the leaf even if they temporarily exhibit a cryptic bract (CB) during early development. Recently, we demonstrated that the CB becomes more prominent under non-inducti...

متن کامل

Functional Characterization of Duplicated SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1-Like Genes in Petunia

Flowering time is strictly controlled by a combination of internal and external signals that match seed set with favorable environmental conditions. In the model plant species Arabidopsis thaliana (Brassicaceae), many of the genes underlying development and evolution of flowering have been discovered. However, much remains unknown about how conserved the flowering gene networks are in plants wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014