Difference of Sodium Currents between Pediatric and Adult Human Atrial Myocytes: Evidence for Developmental Changes of Sodium Channels
نویسندگان
چکیده
Voltage-gated calcium currents and potassium currents were shown to undergo developmental changes in postnatal human and animal cardiomocytes. However, so far, there is no evidence whether sodium currents also presented the developmental changes in postnatal human atrial cells. The aim of this study was to observe age-related changes of sodium currents between pediatric and adult atrial myocytes. Human atrial myocytes were acutely isolated and the whole-cell patch clamp technique was used to record sodium currents isolated from pediatric and adult atrial cardiomocytes. The peak amplitude of sodium currents recorded in adult atrial cells was significantly larger than that in pediatric atrial myocytes. However, there was no significant difference of the activation voltage for peak sodium currents between two kinds of atrial myocytes. The time constants for the activation and inactivation of sodium currents were smaller in adult atria than pediatric atria. The further study revealed that the voltage-dependent inactivation of sodium currents were more slow in adult atrial cardiomyocytes than pediatric atrial cells. A significant difference was also observed in the recovery process of sodium channel from inactivation. In summary, a few significant differences were demonstrated in sodium currents characteristics between pediatric and adult atrial myocytes, which indicates that sodium currents in human atria also undergo developmental changes.
منابع مشابه
Evidence for developmental changes in sodium channel inactivation gating and sodium channel block by phenytoin in rat cardiac myocytes.
The voltage-dependent properties of the voltage-activated sodium channel were studied in neonatal (1-2-day-old) and adult rat ventricular cardiac myocytes using the whole-cell variation of the patch-clamp technique (16 degrees C, [Na]i = 15 mM, [Na]o = 25 mM). The voltage dependence of the sodium conductance-membrane potential relation was similar in both neonatal and adult myocytes except for ...
متن کاملQuinidine interactions with human atrial potassium channels: developmental aspects.
Clinical studies have suggested that quinidine is less effective when used for the treatment of atrial arrhythmias in pediatric patients compared with its clinical effectiveness in the adult patient population. Age-related changes in the cardiac actions of quinidine on action potential duration and interaction with potassium channels in several mammalian species also have been reported. We inve...
متن کاملEffects of Na+ Current and Mechanogated Channels in Myofibroblasts on Myocyte Excitability and Repolarization
Fibrotic remodeling, characterized by fibroblast phenotype switching, is often associated with atrial fibrillation and heart failure. This study aimed to investigate the effects on electrotonic myofibroblast-myocyte (Mfb-M) coupling on cardiac myocytes excitability and repolarization of the voltage-gated sodium channels (VGSCs) and single mechanogated channels (MGCs) in human atrial Mfbs. Mathe...
متن کاملElectrical activity and calcium influx regulate ion channel development in embryonic Xenopus skeletal muscle.
The development of electrical excitability involves complex coordinated changes in ion channel activity. Part of this coordination appears to be due to the fact that the expression of some channels is dependent on electrical activity mediated by other channel types. For example, we have previously shown that normal potassium current development in embryonic skeletal muscle cells of the frog Xen...
متن کاملNoradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex
Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...
متن کامل