Roseobacticides: Small Molecule Modulators of an Algal-Bacterial Symbiosis
نویسندگان
چکیده
Marine bacteria and microalgae engage in dynamic symbioses mediated by small molecules. A recent study of Phaeobacter gallaeciensis, a member of the large roseobacter clade of α-proteobacteria, and Emiliania huxleyi, a prominent member of the microphytoplankton found in large algal blooms, revealed that an algal senescence signal produced by E. huxleyi elicits the production of novel algaecides, the roseobacticides, from the bacterial symbiont. In this report, the generality of these findings are examined by expanding the number of potential elicitors. This expansion led to the identification of nine new members of the roseobacticide family, rare bacterial troponoids, which provide insights into both their biological roles and their biosynthesis. The qualitative and quantitative changes in the levels of roseobacticides induced by the additional elicitors and the elicitors' varied efficiencies support the concept of host-targeted roseobacticide production. Structures of the new family members arise from variable substituents at the C3 and C7 positions of the roseobacticide core as the diversifying elements and suggest that the roseobacticides result from modifications and combinations of aromatic amino acids. Together these studies support a model in which algal senescence converts a mutualistic bacterial symbiont into an opportunistic parasite of its hosts.
منابع مشابه
Hybrid Biosynthesis of Roseobacticides from Algal and Bacterial Precursor Molecules
Roseobacticides regulate the symbiotic relationship between a marine bacterium (Phaeobacter inhibens) and a marine microalga (Emiliania huxleyi). This relationship can be mutualistic, when the algal host provides food for the bacteria and the bacteria produce growth hormones and antibiotics for the algae, or parasitic, when the algae senesce and release p-coumaric acid. The released p-coumaric ...
متن کاملInvestigation of the Genetics and Biochemistry of Roseobacticide Production in the Roseobacter Clade Bacterium Phaeobacter inhibens.
Roseobacterclade bacteria are abundant in surface waters and are among the most metabolically diverse and ecologically significant species. This group includes opportunistic symbionts that associate with micro- and macroalgae. We have proposed that one representative member,Phaeobacter inhibens, engages in a dynamic symbiosis with the microalgaEmiliania huxleyi In one phase, mutualistically ben...
متن کاملInvestigating the effect of Biodrof systems based on algae-bacterial biofilm for removing total Nitrogen, Phosphorus from domestic wastewater
Due to an increase of the human population on Earth, log of pollutants to water resources has increased and this caused the more restriction of water resources for human. Limited availability of fresh water resources, especially in the Middle East that have arid and semi-arid climate increases the importance of water recycling. The main problem in many conventional wastewater treatment systems ...
متن کاملNitric oxide detoxification in the rhizobia-legume symbiosis.
NO (nitric oxide) is a signal molecule involved in diverse physiological processes in cells which can become very toxic under certain conditions determined by its rate of production and diffusion. Several studies have clearly shown the production of NO in early stages of rhizobia-legume symbiosis and in mature nodules. In functioning nodules, it has been demonstrated that NO, which has been rep...
متن کاملThe engine of the reef: photobiology of the coral–algal symbiosis
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the p...
متن کامل