Synergistic effect of hyperbaric oxygen preconditioning and hydrogen-rich saline in ameliorating rat flap ischemia/reperfusion injury
نویسندگان
چکیده
Aim: This study was conducted to evaluate the synergistic effects of hyperbaric oxygen (HBO) preconditioning and hydrogen-rich saline (HRS) treatment on skin flap survival and apoptosis in a rat ischemia/reperfusion (IR) skin flap model. Methods: Male Sprague-Dawley rats were randomly divided into five groups: one sham surgery group (sham group) and four surgery groups (IR group, HBO group, HRS group, and HBO + HRS group). An extended epigastric adipocutaneous flap (6 cm × 9 cm) was raised over the abdomen in each animal of all five groups. The last four groups underwent 6 h of IR management and were treated, respectively, with normal saline, HBO, HRS (HRS, 0.8 mmol/L), or a combined approach (HBO and HRS). On the 3rd postoperative day, flap survival rate and perfusion condition, apoptotic index, caspase-3 activity, protein expression of pASK1 and Bcl-2/Bax ratio, and Bcl-2 messenger RNA (mRNA) expression were assessed. Results: Prior studies have shown the protective effects of HBO and HRS, both of which have been associated with an increase in flap survival. Compared to the IR group, the flaps in the HBO, HRS, and HBO + HRS groups showed better perfusion and a larger survival area with a low number of apoptotic cells, low caspase-3 activity and pASK1 expression, and a high Bcl-2/Bax ratio and Bcl-2 mRNA expression. Of these groups, the HBO + HRS group showed the best flap survival. Conclusion: Both HBO and HRS treatments increase the rate of flap survival, while the synergistic application of HBO and HRS showed a higher survival rate as compared to individual treatments of each. The potential regulation of apoptosis with the use of these two modalities may improve skin flap survival.
منابع مشابه
Hydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine β-synthase (CBS) after cerebral ischemia- reperfusion in rats
Objective(s): This study aimed to evaluate the potential role of hydrogen in rats after cerebral ischemic/reperfusion (I/R) injury. Materials and Methods: The experimental samples were composed of sham group, model group of rats that received middle cerebral artery occlusion (MCAO) for 2 hr followed by reperfusion for 24 hr, and the hydr...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملPathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?
Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...
متن کاملHyperbaric oxygen preconditioning promotes neovascularization of transplanted skin flaps in rats.
To determine whether Hyperbaric oxygen preconditioning (HBO-PC) promotes neovascularization by increasing Stromal cell derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) in transplanted skin flaps of rats. The epigastric pedicle skin flap was established in a rat model. Rats were randomly assigned to the following five groups: 1) sham-operated group (SH); 2) ischemia followed by repe...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کامل