Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route.

نویسندگان

  • Sharath Kandambeth
  • Arijit Mallick
  • Binit Lukose
  • Manoj V Mane
  • Thomas Heine
  • Rahul Banerjee
چکیده

Two new chemically stable [acid and base] 2D crystalline covalent organic frameworks (COFs) (TpPa-1 and TpPa-2) were synthesized using combined reversible and irreversible organic reactions. Syntheses of these COFs were done by the Schiff base reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-dimethyl-p-phenylenediamine (Pa-2), respectively, in 1:1 mesitylene/dioxane. The expected enol-imine (OH) form underwent irreversible proton tautomerism, and only the keto-enamine form was observed. Because of the irreversible nature of the total reaction and the absence of an imine bond in the system, TpPa-1 and TpPa-2 showed strong resistance toward acid (9 N HCl) and boiling water. Moreover, TpPa-2 showed exceptional stability in base (9 N NaOH) as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the chemical structure of monolayer covalent-organic frameworks grown via Schiff-base condensation reactions.

Two-dimensional covalent-organic frameworks (2D-COFs) on surfaces offer a facile route to new 2D materials. Schiff-base condensation reactions have proven to be an effective fabrication route for such materials. We present scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) studies of porphyrin 2D-COFs grown at a solid-vapour interface. XPS shows that covalent links b...

متن کامل

Boronic acid building blocks: tools for self assembly.

Dynamic covalent functionality has been acknowledged as a powerful tool for the construction of organised architectures, the reversible nature thermodynamically facilitates self-control and self-correction. The use of boronic acids complexation with diols and their congeners has already shown great promise in realising and developing reversible boron-containing multicomponent systems with dynam...

متن کامل

Constructing covalent organic frameworks in water via dynamic covalent bonding

The formation of keto-enamine based crystalline, porous polymers in water is investigated for the first time. Facile access to the Schiff base reaction in water has been exploited to synthesize stable porous structures using the principles of Dynamic Covalent Chemistry (DCC). Most credibly, the water-based Covalent Organic Frameworks (COFs) possess chemical as well as physical properties such a...

متن کامل

Crystalline covalent organic frameworks with hydrazone linkages.

Condensation of 2,5-diethoxyterephthalohydrazide with 1,3,5-triformylbenzene or 1,3,5-tris(4-formylphenyl)benzene yields two new covalent organic frameworks, COF-42 and COF-43, in which the organic building units are linked through hydrazone bonds to form extended two-dimensional porous frameworks. Both materials are highly crystalline, display excellent chemical and thermal stability, and are ...

متن کامل

Chemical sensing in two dimensional porous covalent organic nanosheets† †Electronic supplementary information (ESI) available: See DOI: 10.1039/c5sc00512d Click here for additional data file.

Two new imide-based crystalline, porous, and chemically stable covalent organic frameworks (COFs) (TpBDH and TfpBDH) have been successfully synthesized employing solvothermal crystallization route. Furthermore, thin layered covalent organic nanosheets (CONs) were derived from these bulk COFs by the simple liquid phase exfoliation method. These 2D CONs showcase increased luminescence intensity c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 48  شماره 

صفحات  -

تاریخ انتشار 2012