Predicting Actions Using a Probabilistic Model of Human Decision Behaviours

نویسندگان

  • Anthony Cruickshank
  • Subramanian Ramamoorthy
  • Richard Shillcock
چکیده

Computer interfaces provide an environment that allows for multiple objectively optimal solutions but individuals will, over time, use a smaller number of subjectively optimal solutions, developed as habits that have been formed and tuned by repetition. Designing an interface agent to provide assistance in this environment thus requires not only knowledge of the objectively optimal solutions, but also recognition that users act from habit and that adaptation to an individual’s subjectively optimal solutions is required. We present a dynamic Bayesian network model for predicting a user’s actions by inferring whether a decision is being made by deliberation or through habit. The model adapts to individuals in a principled manner by incorporating observed actions using Bayesian probabilistic techniques. We demonstrate the model’s effectiveness using specific implementations of deliberation and habitual decision making, that are simple enough to transparently expose the mechanisms of our estimation procedure. We show that this implementation achieves > 90% prediction accuracy in a task with a large number of optimal solutions and a high degree of freedom in selecting actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting actions using an adaptive probabilistic model of human decision behaviours

Computer interfaces provide an environment that allows for multiple objectively optimal solutions but individuals will, over time, use a smaller number of subjectively optimal solutions, developed as habits that have been formed and tuned by repetition. Designing an interface agent to provide assistance in this environment thus requires not only knowledge of the objectively optimal solutions, b...

متن کامل

Affect Control Processes: Probabilistic and Decision Theoretic Affective Control in Human-Computer Interaction

Affect Control Theory is a mathematical representation of the interactions between two persons, in which it is posited that people behave in a way so as to minimize the amount of deflection between their cultural emotional sentiments and the transient emotional sentiments that are created by each situation. Affect control theory presents a maximum likelihood solution in which optimal behaviours...

متن کامل

Designing and evaluation of a decision support system for prediction of coronary artery disease

Introduction: Since human health is the issue of Medical Research, correct prediction of results is of a high importance. This study applies probabilistic neural network (PNN) for predicting coronary artery disease (CAD), because the PNN is stronger than other methods. Methods: In this descriptive-analytic study, The PNN method was implemented on 150 patients admitted to the Mazandaran Heart...

متن کامل

Verifying Collision Avoidance Behaviours for Unmanned Surface Vehicles using Probabilistic Model Checking

Collision avoidance is an essential safety requirement for unmanned surface vehicles (USVs). Normally, its practical verification is non-trivial, due to the stochastic behaviours of both the USVs and the intruders. This paper presents the probabilistic timed automata (PTAs) based formalism for three collision avoidance behaviours of USVs in uncertain dynamic environments, which are associated w...

متن کامل

Affect control processes: Intelligent affective interaction using a partially observable Markov decision process

This paper describes a novel method for building affectively intelligent human-interactive agents. The method is based on a key sociological insight that has been developed and extensively verified over the last twenty years, but has yet to make an impact in artificial intelligence. The insight is that resource bounded humans will, by default, act to maintain affective consistency. Humans have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015