Estimates for Mixed Character Sums

نویسنده

  • NICHOLAS M. KATZ
چکیده

a nontrivial additive character of k. We are given a polynomial f = f(x1, ..., xn) in n ≥ 1 variables over k of degree d ≥ 1 which is a “Deligne polynomial”, i.e., its degree d is prime to p and its highest degree term, say fd, is a homogeneous form of degree d in n variables which is nonzero, and whose vanishing, if n ≥ 2, defines a smooth hypersurface in the projective space Pn−1. For a Deligne polynomial f as above, one has Deligne’s fundamental estimate [De-Weil I, 8.4]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Burgess bounds for short mixed character sums

This paper proves nontrivial bounds for short mixed character sums by introducing estimates for Vinogradov’s mean value theorem into a version of the Burgess method.

متن کامل

Estimates for Nonsingular Mixed Character Sums

a nontrivial multiplicative character of k. We extend χ to k by defining χ(0) = 0. We wish to consider character sums over An, n ≥ 1, of the following form. We are given a polynomial f (x) := f (x1, . . . , xn) in k[x1, . . . ,Xn] of degree d ≥ 1, and we are given a second polynomial g(X) := g(x1, . . . , xn) in k[x1, . . . , xn] of degree e ≥ 1. We are interested in understanding when the sum ...

متن کامل

A Survey on Pure and Mixed Exponential Sums modulo Prime Powers

where p is a prime power, epm(·) is the additive character epm(x) = e m and χ is a multiplicative character (mod p). The goals of this paper are threefold; first, to point out the similarity between exponential sums over finite fields and exponential sums over residue class rings (mod p) with m ≥ 2; second, to show how mixed exponential sums can be reduced to pure exponential sums when m ≥ 2 an...

متن کامل

Pure and Mixed Exponential Sums

We obtain explicit formulae and sharp estimates for pure and mixed exponential sums of the type S(f, pm) = ∑pm x=1 epm (f(x)) and S(χ, f, pm) = ∑pm x=1 χ(x)epm (f(x)), where p m is a prime power with m ≥ 2, χ is a multiplicative character (mod pm), and f is a polynomial. For nonconstant f (mod p) we prove |S(χ, f, pm)| ≤ 2d 1 M+1 p m(1− 1 M+1 ) where d is the degree of f and M is the maximum mu...

متن کامل

Character sums with Beatty sequences on Burgess-type intervals

We estimate multiplicative character sums taken on the values of a non-homogeneous Beatty sequence {⌊αn + β⌋ : n = 1, 2, . . . }, where α, β ∈ R, and α is irrational. Our bounds are nontrivial over the same short intervals for which the classical character sum estimates of Burgess have been established. 2000 Mathematics Subject Classification: 11B50, 11L40, 11T24

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007