Optimally scaled vector regularization method to solve ill-posed linear problems

نویسنده

  • Chein-Shan Liu
چکیده

Instead of the Tikhonov regularization method which with a scalar being the regularization parameter, Liu et al. [1] have proposed a novel regularization method with a vector as being the regularization parameter. As a continuation we further propose an optimally scaled vector regularization method (OSVRM) to solve the ill-posed linear problems, which is better than the Tikhonov regularization method. The presently proposed vector regularization method is shown to be well conditioning to overcome the ill-posedness of the linear equations system. The OSVRM causes a significant improvement of stability and accuracy in the numerical solution of ill-posed linear problem, and its convergence speed is as fast as by solving the well-posed linear problem. Some tests of the linear inverse problems confirm the efficiency and accuracy of the OSVRM. 2012 Elsevier Inc. All rights reserved.

منابع مشابه

A Dynamical Tikhonov Regularization for Solving Ill-posed Linear Algebraic Systems

The Tikhonov method is a famous technique for regularizing ill-posed linear problems, wherein a regularization parameter needs to be determined. This article, based on an invariant-manifold method, presents an adaptive Tikhonov method to solve ill-posed linear algebraic problems. The new method consists in building a numerical minimizing vector sequence that remains on an invariant manifold, an...

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

Novel Algorithms Based on the Conjugate Gradient Method for Inverting Ill-Conditioned Matrices, and a New Regularization Method to Solve Ill-Posed Linear Systems

We propose novel algorithms to calculate the inverses of ill-conditioned matrices, which have broad engineering applications. The vector-form of the conjugate gradient method (CGM) is recast into a matrix-form, which is named as the matrix conjugate gradient method (MCGM). The MCGM is better than the CGM for finding the inverses of matrices. To treat the problems of inverting illconditioned mat...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2012