Cellulose nanocrystals with tunable surface charge for nanomedicine.

نویسندگان

  • Zeinab Hosseinidoust
  • Md Nur Alam
  • Goeun Sim
  • Nathalie Tufenkji
  • Theo G M van de Ven
چکیده

Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g(-1)) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g(-1) and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL(-1)). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g(-1). A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization.

The goal of this work is the preparation of monolayers of cellulose I nanocrystals providing flat crystalline cellulose surfaces. Suspensions of cellulose nanocrystals were prepared by hydrolyzing ramie and tunicin fibers with sulfuric acid. Due to surface grafted sulfate groups, the negatively charged, rod-like cellulose nanocrystals were found to form stable layers at the air-water interface ...

متن کامل

Cationic Silicon Nanocrystals with Colloidal Stability, pH‐Independent Positive Surface Charge and Size Tunable Photoluminescence in the Near‐Infrared to Red Spectral Range

In this report, the synthesis of a novel class of cationic quaternary ammonium-surface-functionalized silicon nanocrystals (ncSi) using a novel and highly versatile terminal alkyl halide-surface-functionalized ncSi synthon is described. The distinctive features of these cationic ncSi include colloidal stability, pH-independent positive surface charge, and size-tunable photoluminescence (PL) in ...

متن کامل

Imidazole, a New Tunable Reagent for Producing Nanocellulose, Part I: Xylan-Coated CNCs and CNFs

Imidazole is reported to be an effective reactant for the production of nanocellulose from hardwood pulp. The morphologies and surface properties of the nanocellulose can be simply tailored according to the water content in the imidazole system: with pure imidazole, cellulose nanofibrils (CNFs) in a yield of 10 wt % can be produced. With 25 wt % of water in imidazole, cellulose nanocrystals (CN...

متن کامل

Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees.

The process of sulfuric acid-hydrolysis of cellulose fibers for the preparation of cellulose nanocrystals (CNs) includes an esterification reaction between acid and cellulose molecules, which induces the covalent coupling of sulfate groups on the surface of prepared CNs. Negatively charged sulfate groups play an important role in both surface chemistry and physical properties of CNs. This study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 40  شماره 

صفحات  -

تاریخ انتشار 2015