Modified Gellan Gum hydrogels with tunable physical and mechanical properties.

نویسندگان

  • Daniela F Coutinho
  • Shilpa V Sant
  • Hyeongho Shin
  • João T Oliveira
  • Manuela E Gomes
  • Nuno M Neves
  • Ali Khademhosseini
  • Rui L Reis
چکیده

Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work presents a new class of GG hydrogels crosslinkable by both physical and chemical mechanisms. Methacrylate groups were incorporated in the GG chain, leading to the production of a methacrylated Gellan Gum (MeGG) hydrogel with highly tunable physical and mechanical properties. The chemical modification was confirmed by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR-ATR). The mechanical properties of the developed hydrogel networks, with Young's modulus values between 0.15 and 148 kPa, showed to be tuned by the different crosslinking mechanisms used. The in vitro swelling kinetics and hydrolytic degradation rate were dependent on the crosslinking mechanisms used to form the hydrogels. Three-dimensional (3D) encapsulation of NIH-3T3 fibroblast cells in MeGG networks demonstrated in vitro biocompatibility confirmed by high cell survival. Given the highly tunable mechanical and degradation properties of MeGG, it may be applicable for a wide range of tissue engineering approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the rheology of gellan gum hydrogels in cell culture conditions.

Successful culturing of tissues within polysaccharide hydrogels is reliant upon specific mechanical properties. Namely, the stiffness and elasticity of the gel have been shown to have a profound effect on cell behaviour in 3D cell cultures and correctly tuning these mechanical properties is critical to the success of culture. The usual way of tuning mechanical properties of a hydrogel to suit t...

متن کامل

Enhanced gelation properties of purified gellan gum.

Gellan gum is a hydrogel-forming polysaccharide when combined with monovalent or divalent cations such as sodium, magnesium, potassium or calcium. Commercially, gellan gums are sold with trace amounts of these cations, which have been proven to affect the gelation and mechanical properties of the resultant hydrogels. A new method based on impedance analysis for determining the gel transition te...

متن کامل

Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release.

Innovative hydrogels obtained by physical and chemical crosslinking of deacylated Gellan gum have been characterized in terms of water uptake, rheological properties and compressibility, and the behaviour of the tested materials, according to the type of the obtained network, is thoroughly discussed. The release from the various gels of loaded model molecules of different steric hindrance was a...

متن کامل

Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting.

Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of t...

متن کامل

Rheological and mechanical properties of acellular and cell-laden methacrylated gellan gum hydrogels.

Tissue engineered hydrogels hold great potential as nucleus pulposus substitutes (NP), as they promote intervertebral disc (IVD) regeneration and re-establish its original function. But, the key to their success in future clinical applications greatly depends on its ability to replicate the native 3D micro-environment and circumvent their limitation in terms of mechanical performance. In the pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomaterials

دوره 31 29  شماره 

صفحات  -

تاریخ انتشار 2010