Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.
نویسندگان
چکیده
Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals.
منابع مشابه
How to determine the permeability for cement infiltration of osteoporotic cancellous bone.
Cement augmentation is an emerging surgical procedure in which bone cement is used to infiltrate and reinforce osteoporotic vertebrae. Although this infiltration procedure has been widely applied, it is performed empirically and little is known about the flow characteristics of cement during the injection process. We present a theoretical and experimental approach to investigate the intertrabec...
متن کاملThermal analysis of bone cement polymerisation at the cement-bone interface.
The two major problems that have been reported with the use of polymethylmethacrylate (PMMA) cement are thermal necrosis of surrounding bone due to the high heat generation during polymerisation and chemical necrosis due to unreacted monomer release. Computer models have been used to study the temperature and monomer distribution after cementation. In most of these models, however, polymerisati...
متن کاملBiomechanical Evaluation of Augmentation of Osteoporotic Cancellous Bone with an Injectable Nano-hydroxyapatite/ Polyamide 66 Composite Cement
A new injectable biomimetic composite cement composed of nano-hydroxyapatite (n-HA) and polyamide 66 (polyhexamethylene adipamide) has been developed. This study investigated that in vitro biomechanical performances of three n-HA/PA composite cements in the augmentation of osteoporotic cancellous bone were different in various n-HA content to evaluate the clinical applicability. The thoracic ve...
متن کاملInterfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone.
The bone-bonding behaviors of various biomaterials have been extensively investigated. However, the precise mechanisms of bone bonding have not yet been clarified, and the differences in interfacial behaviors of biomaterial bonding with cancellous bone and cortical bone have not yet been understood. In this study, strontium-containing hydroxyapatite (Sr-HA) cement, in which 10% calcium ions wer...
متن کاملA Particle Model for Prediction of Cement Infiltration of Cancellous Bone in Osteoporotic Bone Augmentation
Femoroplasty is a potential preventive treatment for osteoporotic hip fractures. It involves augmenting mechanical properties of the femur by injecting Polymethylmethacrylate (PMMA) bone cement. To reduce the risks involved and maximize the outcome, however, the procedure needs to be carefully planned and executed. An important part of the planning system is predicting infiltration of cement in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomaterials applications
دوره 29 4 شماره
صفحات -
تاریخ انتشار 2014