Shear stress decreases endothelial cell tissue factor activity by augmenting secretion of tissue factor pathway inhibitor.

نویسندگان

  • E F Grabowski
  • A J Reininger
  • P G Petteruti
  • O Tsukurov
  • R W Orkin
چکیده

Monolayers of human umbilical vein endothelial cells were activated with 50 U/mL interleukin-1alpha (IL-1alpha) for 3 hours and simultaneously conditioned with shear stresses of 0, 0.68, or 13.2 dyne/cm(2) in a parallel-plate flow chamber. In the presence of an inflow buffer containing 100 nmol/L factor X and 10 nmol/L factor VII, production of factor Xa, a measure of functional tissue factor (TF), was determined as the product of outflow concentration of factor Xa (chromogenic assay performed under quasi-static flow conditions after the shear period) and flow rate. Similarly, production of TF pathway inhibitor (TFPI) was estimated as the product of antigenic TFPI (by enzyme-linked immunosorbent assay) in the supernatant and flow rate. In parallel experiments, total RNA was isolated for determination of amplification products of TF mRNA by reverse transcription-polymerase chain reaction. We found that shear stress reduced factor Xa production (mean+/-SE; n=number of experiments) from 13.33+/-1.14 (n=16) fmol/minxcm(2) at 0 shear stress to 5.70+/-2.51 (n=5) and 0.54+/-0.54 (n=4) fmol/minxcm(2) at shear stresses of 0.68 and 13.2 dyne/cm(2), respectively. At the same time, immunogold labeling showed that TF antigen on the endothelial surface increased >5-fold with shear stress, whereas TFPI antigen on the surface increased 2-fold. The secretion of TFPI (appearance of new supernatant TFPI) rose from 7.4+/-2.4 (n=12) x10(-)(3) fmol/minxcm(2) at 0 shear stress to 23.7+/-7.3 (n=9) and 50.2+/-14.3 (n=4) x10(-)(3) fmol/minxcm(2) at 0.68 and 13.2 dyne/cm(2), respectively. TF mRNA amplification products were not markedly changed by shear stress. We conclude that acute application of shear stress reduces functional, but not antigenic, expression of TF by intact, activated endothelial cell monolayers in a manner associated with shear stress-augmented endothelial cell secretion of TFPI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid flow induces upregulation of synthesis and release of tissue factor pathway inhibitor in vitro.

Fluid flow modulates the synthesis and secretion by endothelial cells (ECs) of several proteins that control the hemostatic properties of the vessel wall. Tissue factor pathway inhibitor (TFPI), also synthesized by ECs, is the main downregulator of tissue factor-dependent procoagulant activity. In the present study, we investigated the effect of physiological shear stress on the expression, dis...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

Role of shear-stress-induced VEGF expression in endothelial cell survival.

Vascular endothelial growth factor (VEGF) plays a crucial role in developmental and pathological angiogenesis. Expression of VEGF in quiescent adult tissue suggests a potential role in the maintenance of mature blood vessels. We demonstrate, using a Vegf-lacZ reporter mouse model, that VEGF is expressed by arterial but not by venous or capillary endothelial cells (ECs) in vivo. Using an in vitr...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Endothelial differentiation of adipose-derived stem cells from elderly patients with cardiovascular disease.

Adipose-derived stem cells (ASCs) possess significant therapeutic potential for tissue engineering and regeneration. This study investigates the endothelial differentiation and functional capacity of ASCs isolated from elderly patients. Isolation of ASCs from 53 patients (50-89 years) revealed that advanced age or comorbidity did not negatively impact stem cell harvest; rather, higher numbers w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2001