Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase.

نویسندگان

  • Katja Gotthardt
  • Michael Weyand
  • Arjan Kortholt
  • Peter J M Van Haastert
  • Alfred Wittinghofer
چکیده

Ras of complex proteins (Roc) belongs to the superfamily of Ras-related small G-proteins that always occurs in tandem with the C-terminal of Roc (COR) domain. This Roc-COR tandem is found in the bacterial and eukaryotic world. Its most prominent member is the leucine-rich repeat kinase LRRK2, which is mutated and activated in Parkinson patients. Here, we investigated biochemically and structurally the Roco protein from Chlorobium tepidum. We show that Roc is highly homologous to Ras, whereas the COR domain is a dimerisation device. The juxtaposition of the G-domains and mutational analysis suggest that the Roc GTPase reaction is stimulated and/or regulated by dimerisation in a nucleotide-dependent manner. The region most conserved between bacteria and man is the interface between Roc and COR, where single-point Parkinson mutations of the Roc and COR domains are in close proximity. The analogous mutations in C. tepidum Roc-COR decrease the GTPase reaction rate, most likely due to a modification of the interaction between the Roc and COR domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational heterogeneity of the Roc domains in C. tepidum Roc–COR and implications for human LRRK2 Parkinson mutations

Ras of complex proteins (Roc) is a Ras-like GTP-binding domain that always occurs in tandem with the C-terminal of Roc (COR) domain and is found in bacteria, plants and animals. Recently, it has been shown that Roco proteins belong to the family of G-proteins activated by nucleotide (nt)-dependent dimerization (GADs). We investigated the RocCOR tandem from the bacteria Chlorobium tepidum with s...

متن کامل

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways

Mutations in PARK8, encoding LRRK2, are the most common known cause of Parkinson's disease. The LRRK2 Roc-COR tandem domain exhibits GTPase activity controlling LRRK2 kinase activity via an intramolecular process. We report the interaction of LRRK2 with the dishevelled family of phosphoproteins (DVL1-3), key regulators of Wnt (Wingless/Int) signalling pathways important for axon guidance, synap...

متن کامل

Contribution of GTPase activity to LRRK2-associated Parkinson disease

Mutations in the leucine-rich repeat kinase 2 (LRRK2, PARK8, OMIM 607060) gene represent the most common known cause of hereditary Parkinson's disease (PD) with late-onset and dominant inheritance. LRRK2 protein is composed of multiple domains including two distinct enzymatic domains, a kinase and a Ras-of-complex (Roc) GTPase, connected by a C-terminal-of-Roc (COR) domain, and belongs to the R...

متن کامل

P 105: The Role of LRRK2 Inhibitors in Treatment of Parkinson’s Disease

Parkinson’s disease is the second most common age associated neuron degenerative disorder in developed societies. With the prevalence ranging from 41 per 100000 in the fourth decade of life to over 1900 per 100000 in people over 80 years of age.it characterized clinically by resting tremor, slowness of movement, rigidity and postural instability in the result of progressive loss of dopami...

متن کامل

Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.

Various investigators have identified the major domain organization of LRRK2 (leucine-rich repeat kinase 2), which includes a GTPase ROC (Ras of complex proteins) domain followed by a COR (C-terminal of ROC) domain and a protein kinase domain. In addition, there are four domains composed of structural repeat motifs likely to be involved in regulation and localization of this complex protein. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 27 16  شماره 

صفحات  -

تاریخ انتشار 2008