Lewis‐Acid‐assisted Hydrogen Atom Transfer to Manganese(V)‐Oxo Corrole through Valence Tautomerization

نویسندگان

  • Curt J. Bougher
  • Mahdi M. Abu‐Omar
چکیده

The kinetics of formation of the valence tautomers (tpfc⋅)MnIV(O-LA)] n+ [where LA=ZnII, CaII, ScIII, YbIII, B(C6F5)3, and trifluoroacetic acid (TFA); tpfc=5,10,15-tris(pentafluorophenyl) corrole] from (tpfc)MnV(O) were followed by UV/Vis spectroscopy, giving second-order rate constants ranging over five orders of magnitude from 10-2 for Ca to 103  m -1 s-1 for Sc. Hydrogen atom transfer (HAT) rates from 2,4-di-tert-butyl phenol (2,4-DTBP) to the various Lewis acid valence tautomers of manganese oxo corrole complexes were evaluated and compared. For LA=TFA, ScIII, or YbIII, the rate constants of HAT were comparable to unactivated (tpfc)MnV(O). However, with LA=B(C6F5)3, ZnII, and CaII, 6-, 21-, and 31-fold rate enhancements were observed, respectively. Remarkably, [(tpfc⋅)MnIV(OCa)]2+ gave the most enhancement despite its rate of formation being the slowest. Comparisons of HAT rate constants among the various Lewis acid tautomers revealed that both size and charge are important. This study underscores how valence may affect the reactivity of high-valent manganese-oxo compounds and sheds light on nature's choice of Ca in the activation of Mn-oxo in the oxygen-evolving complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of a High-Valent Manganese–Oxo Complex by a Nonmetallic Lewis Acid

The reaction of a manganese(V)-oxo porphyrinoid complex with the Lewis acid B(C6F5)3 leads to reversible stabilization of the valence tautomer Mn(IV)(O)(π-radical cation). The latter complex, in combination with B(C6F5)3, reacts with ArO-H substrates via formal hydrogen-atom transfer and exhibits dramatically increased reaction rates over the Mn(V)(O) starting material.

متن کامل

Hydrogen-atom abstraction reactions by manganese(V)- and manganese(IV)-oxo porphyrin complexes in aqueous solution.

High-valent manganese(IV or V)-oxo porphyrins are considered as reactive intermediates in the oxidation of organic substrates by manganese porphyrin catalysts. We have generated Mn(V)- and Mn(IV)-oxo porphyrins in basic aqueous solution and investigated their reactivities in C-H bond activation of hydrocarbons. We now report that Mn(V)- and Mn(IV)-oxo porphyrins are capable of activating C-H bo...

متن کامل

Mechanistic studies of Hangman salophen-mediated activation of O-O bonds.

Stopped-flow kinetic studies of a HSX-Mn-SalophOMe (1) catalyst provide spectroscopic evidence for the direct generation of a manganese(V) oxo salophen from a manganese(III) perbenzoate. The O-O bond heterolysis reaction that produces the oxo is not facilitated by intramolecular proton transfer from the acid hanging group of the HSX platform. Instead, the hanging group stabilizes the catalyst a...

متن کامل

Computational study of the intramolecular proton transfer between 6-hydroxypicolinic acid tautomeric forms and intermolecular hydrogen bonding in their dimers

This paper is a density functional theory (DFT) calculation of intramolecular proton transfer (IPT) in 6-hydroxypicolinic acid (6HPA, 6-hydroxypyridine-2-carboxylic acid) tautomeric forms. The transition state for the enol-to-keto transition is reported in the gas phase and in four different solvents. The planar and non-planar dimer forms of 6HPA keto and enol, respectively, were also studied i...

متن کامل

A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016