Degenerate scale for the analysis of circular thin plate using the boundary integral equation method and boundary element methods
نویسنده
چکیده
In this paper, the degenerate scale for plate problem is studied. For the continuous model, we use the null-field integral equation, Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to examine the solvability of BIEM for circular thin plates. Any two of the four boundary integral equations in the plate formulation may be chosen. For the discrete model, the circulant is employed to determine the rank deficiency of the influence matrix. Both approaches, continuous and discrete models, lead to the same result of degenerate scale. We study the nonunique solution analytically for the circular plate and find degenerate scales. The similar properties of solvability condition between the membrane (Laplace) and plate (biharmonic) problems are also examined. The number of degenerate scales for the six boundary integral formulations is also determined.
منابع مشابه
Element Free Galerkin Method for Static Analysis of Thin Micro/Nanoscale Plates Based on the Nonlocal Plate Theory
In this article, element free Galerkin method is used for static analysis of thin micro/nanoscale plates based on the nonlocal plate theory. The problem is solved for the plates with arbitrary boundary conditions. Since shape functions of the element free Galerkin method do not satisfy the Kronecker’s delta property, the penalty method is used to impose the essential boundary conditions. Discre...
متن کاملAnalytical Solution for Sound Radiation of Vibrating Circular Plates coupled with Piezo-electric Layers
In the present study, the classical plate theory (CPT) was used to study sound radiation of forced vibrating thin circular plates coupled with piezoelectric layers using simply supported and clamped boundary conditions. The novelty of the study consists of an exact closed-form solution that was developed without any use of approximation. Piezoelectric, electrical potential loaded in the transve...
متن کاملBending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method
This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...
متن کاملScattering of flexural wave in thin plate with multiple holes by using the null-field integral equation approach
In this paper, a semi-analytical approach is proposed to solve the scattering problem of flexural waves and to determine dynamic moment concentration factors (DMCFs) in an infinite thin plate with multiple circular holes. The null-field integral formulation is employed in conjunction with degenerate kernels, tensor transformation and Fourier series. In the proposed direct formulation, all dynam...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کامل